Selective Catalytic Transfer Hydrogenation of Lignin to Alkyl Guaiacols Over NiMo/Al-MCM-41.

ChemSusChem

Co-Innovation Center for Efficient Processing and Utilization of Forest Products, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P. R. China.

Published: April 2022

Efficient deoxygenation of lignin-derived bio-oils is central to their adoption as precursors to sustainable liquid fuels in place of current fossil resources. In-situ catalytic transfer hydrogenation (CTH), using isopropanol and formic acid as solvent and in-situ hydrogen sources, was demonstrated over metal-doped and promoted MCM-41 for the depolymerization of oxygen-rich (35.85 wt%) lignin from Chinese fir sawdust (termed O-lignin). A NiMo/Al-MCM-41 catalyst conferred an optimal lignin-derived oil yield of 61.6 wt% with a comparatively low molecular weight (M =542 g mol , M =290 g mol ) and H/C ratio of 1.39. High selectivity to alkyl guaiacols was attributed to efficient in-situ hydrogen transfer from isopropanol/formic acid donors, and a synergy between surface acid sites in the Al-doped MCM-41 support and reducible Ni/Mo species, which improved the chemical stability and quality of the resulting lignin-derived bio-oils.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202200099DOI Listing

Publication Analysis

Top Keywords

catalytic transfer
8
transfer hydrogenation
8
alkyl guaiacols
8
lignin-derived bio-oils
8
in-situ hydrogen
8
selective catalytic
4
hydrogenation lignin
4
lignin alkyl
4
guaiacols nimo/al-mcm-41
4
nimo/al-mcm-41 efficient
4

Similar Publications

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Ratiometric sensor based on Ag-mediated luminescence of Tb-DNA complexes for visual detection of 4-aminophenol.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China. Electronic address:

Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag, which can trigger energy transfer from DNA to Tb more efficiently.

View Article and Find Full Text PDF

Anti-Markovnikov Hydroacylation of Aryl Alkenes with Aldehydes Enabled by Photo/Cobalt Dual Catalysis.

Org Lett

December 2024

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072.

Herein we describe a dual photo/cobalt-catalyzed anti-Markovnikov hydroacylation of aryl alkenes using aldehyde as acyl source. The key to success is the cobalt catalyzed hydrogen atom transfer, which enables effective formation of the desired products and efficient regeneration of the photocatalyst under mild conditions. This protocol features broad substrate scopes, good functional group tolerance, high efficiency and regioselectivity.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!