Calcific aortic valve disease (CAVD) is a common valve disease characterized by the fibro-calcific remodeling of the aortic valves, which is an actively regulated process involving osteogenic differentiation of valvular interstitial cells (VICs). MicroRNA (miRNA) is an essential regulator in diverse biological processes in cells. The present study aimed to explore the role and mechanism of miR-22 in the osteogenic differentiation of VICs. The expression profile of osteogenesis-related miRNAs was first detected in aortic valve tissue from CAVD patients (n = 33) and healthy controls (n = 12). miR-22 was highly expressed in calcified valve tissues (P < 0.01), and the expression was positively correlated with the expression of OPN (r = 0.820, P < 0.01) and Runx2 (r = 0.563, P < 0.01) in VICs isolated from mild or moderately calcified valves. The sustained high expression of miR-22 was also validated in an in-vitro VICs osteogenic model. Adenovirus-mediated gain-of-function and loss-of-function experiments were then performed. Overexpression of miR-22 significantly accelerated the calcification process of VICs, manifested by significant increases in calcium deposition, alkaline phosphate activity, and expression of osteoblastic differentiation markers. Conversely, inhibition of miR-22 significantly negated the calcification process. Subsequently, calcium-binding protein 39 (CAB39) was identified as a target of miR-22. Overexpression of miR-22 significantly reduced the expression of CAB39 in VICs, leading to decreased catalytic activity of the CAB39-LKB1-STRAD complex, which, in turn, exacerbated changes in the AMPK-mTOR signaling pathway, and ultimately accelerated the calcification process. In addition, ROS generation and autophagic activity during VIC calcification were also regulated by miR-22/CAB39 pathway. These results indicate that miR-22 is an important accelerator of the osteogenic differentiation of VICs, and a potential therapeutic target in CAVD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073073PMC
http://dx.doi.org/10.1007/s00018-022-04177-6DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
aortic valve
12
differentiation valvular
8
valvular interstitial
8
interstitial cells
8
valve disease
8
valve
5
microrna-22 promoted
4
promoted osteogenic
4
cells inhibiting
4

Similar Publications

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!