The abnormal growth of cells in the breast is called malignancy or breast cancer; it is a life-threatening and dangerous cancer in women around the world. In the treatment of cancer, the doctors apply different techniques to stop cancer cell development, remove cancer cells through surgery, or kill cancer cells. In chemotherapy treatment, powerful drugs are used to kill abnormal cells; however, it has adverse reactions on the patient heart which is called cardiotoxicity. In this paper, we formulate the dynamics of cancer in the breast with adverse reactions of chemotherapy treatment on the heart of a patient in the fractional framework to visualize its dynamical behaviour. We listed the fundamental results of the fractional calculus for the analysis of our model. The model is then analyzed for the basic properties, and the existence and uniqueness of the proposed breast cancer system are investigated through fixed point theory. Furthermore, the Adams-Bashforth numerical technique is presented for the solution of fractional-order system to illustrate the time series of breast cancer model. The dynamical behaviour of different stages of breast cancer is then highlighted numerically to show the effect of fractional-order and to visualize the role of input parameter on the dynamics of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858052PMC
http://dx.doi.org/10.1155/2022/5636844DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer
12
adverse reactions
12
chemotherapy treatment
12
breast
8
reactions chemotherapy
8
cancer cells
8
dynamical behaviour
8
modeling analysis
4
analysis breast
4

Similar Publications

Background: Intraoperative ultrasound-guided breast-conserving surgery guarantees real-time direct visualization of tumor and resection margins. We compared surgical, oncologic, and cosmetic outcomes between intraoperative ultrasound-guided breast-conserving surgery and traditional (palpation- or wire-guided) surgery across all breast cancer lesion types.

Methods: This prospective observational cohort study was conducted at the Veneto Institute of Oncology between January 2021 and October 2022.

View Article and Find Full Text PDF

Purpose: Clonal hematopoiesis (CH) has been associated with a variety of adverse outcomes, most notably hematologic malignancy and ischemic cardiovascular disease. A series of recent studies also suggest that CH may play a role in the outcomes of patients with solid tumors, including breast cancer. Here, we review the clinical and biological data that underlie potential connections between CH, inflammation, and breast cancer, with a focus on the prevalence and impact of clonal hematopoiesis of indeterminate potential in patients with breast cancer.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer.

J Cell Mol Med

January 2025

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.

siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

Carcinosarcoma (CS), also known as metaplastic breast carcinoma with mesenchymal differentiation, is one of the five distinct subtypes of metaplastic breast cancer. It is considered as a mixed, biphasic neoplasm consisting of a carcinomatous component combined with a malignant nonepithelial element of mesenchymal origin without an intermediate transition zone. Although cellular origin of this neoplasm remains controversial, most researchers declare that neoplastic cells derive from a cellular structure with potential biphasic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!