Multivariate curve resolution unmixing of hyperspectral imaging data can be challenging when low sources of variance are present in complex samples, as for minor (low-concentrated) chemical compounds in pharmaceutical formulations. In this work, it was shown how the reduction of hyperspectral imaging data matrices through the selection of essential spectra can be crucial for the analysis of complex unknown pharmaceutical formulation applying Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). Results were obtained on simulated datasets and on real FT-IR and Raman hyperspectral images of both genuine and falsified tablets. When simulating the presence of minor compounds, different situations were investigated considering the presence of single pixels of pure composition as well as binary and ternary mixtures. The comparison of the results obtained applying MCR-ALS on the reduced data matrices with those obtained on the full matrices revealed unequivocal: more accurate decomposition could be achieved when only essential spectra were analyzed. Indeed, when analyzing the full dataset, MCR-ALS failed resolving minor compounds even though pure spectra were provided as initial estimation, as shown for Raman hyperspectral imaging data obtained on a medicine sample containing 7 chemical compounds. In contrast, when considering the reduced dataset, all minor contributions (down to 1 pixel over 17,956) were successfully unmixed. The same conclusion could be drawn from the results obtained analysing FT-IR hyperspectral imaging data of a falsified medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.339532DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
16
imaging data
16
essential spectra
12
multivariate curve
12
curve resolution
12
minor compounds
12
selection essential
8
pharmaceutical formulations
8
chemical compounds
8
data matrices
8

Similar Publications

Visible and Near-infrared hyperspectral imaging (VNIR-HSI) combined with machine learning has shown its effectiveness in various detection applications. Specifically, the quality of cigar tobacco leaves undergoes subtle changes due to environmental differences during the air-curing phase. This study aims to evaluate the feasibility of deep learning methods in overcoming data limitations to develop a VNIR-HSI prediction model for the quality of cigar tobacco leaves at different air-curing levels.

View Article and Find Full Text PDF

As consumers increasingly prioritize food safety and nutritional value, the dairy industry faces a pressing need for rapid and accurate methods to detect essential nutritional components in milk, such as fat, protein, and lactose. Hyperspectral imaging (HSI) technology, known for its non-destructive, fast, and precise nature, shows great promise in food quality assessment. However, the high dimensionality of HSI data poses challenges for effective band selection and model optimization.

View Article and Find Full Text PDF

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF

The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.

View Article and Find Full Text PDF

Ultraviolet (UV) hyperspectral imaging shows significant promise for the classification and quality assessment of raw cotton, a key material in the textile industry. This study evaluates the efficacy of UV hyperspectral imaging (225-408 nm) using two different light sources: xenon arc (XBO) and deuterium lamps, in comparison to NIR hyperspectral imaging. The aim is to determine which light source provides better differentiation between cotton types in UV hyperspectral imaging, as each interacts differently with the materials, potentially affecting imaging quality and classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!