A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Changes in leaf ecophysiological traits and proteome profile provide new insights into variability of salt response in the succulent halophyte . | LitMetric

Changes in leaf ecophysiological traits and proteome profile provide new insights into variability of salt response in the succulent halophyte .

Funct Plant Biol

Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; and Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Street 2, 30419 Hannover, Germany.

Published: June 2022

Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves. Changes in biomass, photosynthetic gas exchange and pigment concentrations in C. maritima plants treated with three salinity levels (0, 100 and 300mM NaCl) were monitored for 1month. Comparative two-dimensional gel electrophoresis (2-DE) revealed 94 and 56 proteins of differential abundance in Raoued and Djerba accessions, respectively. These salinity-responsive proteins were mainly related to photosynthesis and oxidative phosphorylation (OXPHOS). Although Djerba accession showed a lower biomass productivity, it showed a slightly higher CO2 assimilation rate than Raoued accession when salt-treated. Photosynthesis impairment in both accessions under salinity was also suggested by the lower abundance of proteins involved in Calvin cycle and electron transfer. A significant increase of protein spots involved in the OXPHOS system was found in Djerba accession, suggesting an increase in mitochondrial respiration for increased ATP production under saline conditions, whereas a lesser pronounced trend was observed for Raoued accession. The latter showed in addition higher abundance of proteins involved in photorespiration. Salt-challenged plants of Djerba also likely developed mechanisms for scavenging ROS in leaves as shown by the increase in superoxide dismutase and thioredoxin, while an opposite trend was found in Raoued.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP21151DOI Listing

Publication Analysis

Top Keywords

djerba accession
8
raoued accession
8
abundance proteins
8
proteins involved
8
djerba
5
raoued
5
changes leaf
4
leaf ecophysiological
4
ecophysiological traits
4
traits proteome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!