Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The band offsets between semiconductors are significantly associated with the optoelectronic characteristics and devices design. Here, we investigate the band offset trends of few-layer and bulk IV-VI semiconductors MX and MX(M = Ge, Sn; X = S, Se, Te). For common-cation (anion) systems, as the atomic number increases, the valence band offset of MX decreases, while that of MXhas no distinct change, and the physical origin can be interpreted using band coupling mechanism and atomic potential trend. The band edges of GeXsystem straddle redox potentials of water, making them competitive candidates for photocatalyst. Moreover, layer number modulation can induce the band offset of GeSe/SnS and GeSe/GeSheterojunction undergoing a transition from type I to type II, which makes them suitable for optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac5707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!