Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plants have evolved immune systems to fight against pathogens. However, it is still largely unknown how the plant immunity is finely regulated. Here we identified a BTB/POZ domain-containing protein, namely NbBTB, which is predicted to be a member of the ubiquitin E3 ligase complex. The NbBTB expression is downregulated upon the oomycete pathogen Phytophthora parasitica infection. Overexpression of NbBTB in Nicotiana benthamiana promoted plant susceptibility to P. parasitica infection, and silencing NbBTB increased plant resistance to P. parasitica, indicating that NbBTB negatively modulates plant basal defense. Interestingly, overexpressing or silencing NbBTB did not affect plant resistance to two bacterial pathogens Ralstonia solanacearum and Pseudomonas syringae, suggesting that NbBTB is specifically involved in basal defense against oomycete pathogen. Expression of NbBTB suppressed hypersensitive response (HR) triggered by avirulence proteins from both R. sonanacearum and P. infestans, and silencing NbBTB showed the opposite effect, indicating that NbBTB negatively regulates effector-triggered immunity (ETI). Protein accumulation of avirulence effectors in NbBTB-silenced plants was significantly enhanced, suggesting that NbBTB is likely to negatively modulate ETI by affecting effector protein accumulation. Together, our results demonstrated that NbBTB is a negative regulator in both plant basal defense and ETI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.02.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!