Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To present an approach on using electronic health record (EHR) data that assesses how different eligibility criteria, either individually or in combination, can impact patient count and safety (exemplified by all-cause hospitalization risk) and further assist with criteria selection for prospective clinical trials.
Materials And Methods: Trials in three disease domains - relapsed/refractory (r/r) lymphoma/leukemia; hepatitis C virus (HCV); stages 3 and 4 chronic kidney disease (CKD) - were analyzed as case studies for this approach. For each disease domain, criteria were identified and all criteria combinations were used to create EHR cohorts. Per combination, two values were derived: (1) number of eligible patients meeting the selected criteria; (2) hospitalization risk, measured as the hazard ratio between those that qualified and those that did not. From these values, k-means clustering was applied to derive which criteria combinations maximized patient counts but minimized hospitalization risk.
Results: Criteria combinations that reduced hospitalization risk without substantial reductions on patient counts were as follows: for r/r lymphoma/leukemia (23 trials; 9 criteria; 623 patients), applying no infection and adequate absolute neutrophil count while forgoing no prior malignancy; for HCV (15; 7; 751), applying no human immunodeficiency virus and no hepatocellular carcinoma while forgoing no decompensated liver disease/cirrhosis; for CKD (10; 9; 23893), applying no congestive heart failure.
Conclusions: Within each disease domain, the more drastic effects were generally driven by a few criteria. Similar criteria across different disease domains introduce different changes. Although results are contingent on the trial sample and the EHR data used, this approach demonstrates how EHR data can inform the impact on safety and available patients when exploring different criteria combinations for designing clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920749 | PMC |
http://dx.doi.org/10.1016/j.jbi.2022.104032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!