The ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence. PFAAs could induce the accumulation of hydrogen peroxide and lipid peroxidation in H. verticillate. Significant upregulation of CAT was observed in treatments with more than 10 μg/L PFAAs (p < 0.05). The results also showed that 13.53-20.01% and 19.73-37.72% of PFAAs could be removed in treatments without plants and with H. verticillate, respectively. The removal rates of PFAAs were significantly correlated with perfluoroalkyl chain length in treatments with H. verticillate. The removal of PFAAs was suggested to be related to the uptake of plant tissues and biosorption of microbiota. Furthermore, the dominant microbiota and biomarkers were identified in water and biofilm. Betaproteobacteriales was the most dominant microbiota at the order level. The presence of PFAAs could significantly increase the relative abundance of Micrococcales, Verrucomicrobiales, Rhizobiales, Sphingomonadales, Roseomonas, Cyanobium_PCC_6307, and Synechococcales. Our results provide scientific basis for evaluating the ecotoxicological responses and removal of submerged macrophytes in response to multiple PFAA pollutants at environmentally relevant levels, thereby providing insights into PFAA management and removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.153919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!