Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaA) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaA accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaA-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942822 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.101745 | DOI Listing |
Front Mol Biosci
September 2024
Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria.
J Bacteriol
February 2024
Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.
The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis.
View Article and Find Full Text PDFSci Rep
August 2023
NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria.
Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic β-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor).
View Article and Find Full Text PDFAppl Environ Microbiol
October 2022
Department of Chemical and Biomolecular Engineering, North Carolina State Universitygrid.40803.3f, Raleigh, North Carolina, USA.
Extremely thermophilic species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383).
View Article and Find Full Text PDFJ Bacteriol
September 2022
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA.
Bacillus anthracis elaborates a secondary cell wall polysaccharide (SCWP) made of 6 to 12 trisaccharide units. Pyruvyl and acetyl substitutions of the distal unit are prerequisites for the noncovalent retention of 22 secreted S-layer (Bsl)-associated proteins bearing an S-layer homology (SLH) domain. Surface display of Bsl proteins contributes to cell separation as well as virulence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!