On the development and validation of the SXS model for ADHF.

Indian Heart J

Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA.

Published: April 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039671PMC
http://dx.doi.org/10.1016/j.ihj.2022.02.006DOI Listing

Publication Analysis

Top Keywords

development validation
4
validation sxs
4
sxs model
4
model adhf
4
development
1
sxs
1
model
1
adhf
1

Similar Publications

Background: Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND), which significantly affects the patients' prognosis.

Objective: This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML model to predict PND among LT recipients.

Methods: In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were extracted from the Third Affiliated Hospital of Sun Yat-sen University.

View Article and Find Full Text PDF

Continuous Instrument Tracking in a Cerebral Corticectomy Ex Vivo Calf Brain Simulation Model: Face and Content Validation.

Oper Neurosurg (Hagerstown)

July 2024

Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada.

Background And Objectives: Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment.

View Article and Find Full Text PDF

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Novel pain assessment tool specific for pulp symptoms to aid diagnosis.

Int Endod J

January 2025

Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.

Aim: Although many pain assessment tools exist, none are specific to the relatively unique presentation of pulpal pain. The aim of this study was to develop and validate a novel pain assessment tool based on pulp symptoms.

Methodology: A preliminary list of items best-describing pulpitis was developed based on deductive and inductive approaches and the preliminary tool was piloted (n = 80).

View Article and Find Full Text PDF

Ion Pair Chromatography for Endogenous Metabolite LC-MS Analysis in Tissue Samples Following HGH Resolution Untargeted Acquisition.

Methods Mol Biol

January 2025

Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.

A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!