According to Mayr, polar organic synthesis can be rationalized by a simple empirical relationship linking bimolecular rate constants to as few as three reactivity parameters. Here, we propose an extension to Mayr's reactivity method that is rooted in uncertainty quantification and transforms the reactivity parameters into probability distributions. Through uncertainty propagation, these distributions can be transformed into uncertainty estimates for bimolecular rate constants. Chemists can exploit these virtual error bars to enhance synthesis planning and to decrease the ambiguity of conclusions drawn from experimental data. We demonstrate the above at the example of the reference data set released by Mayr and co-workers [J. Am. Chem. Soc. 2001, 123, 9500; J. Am. Chem. Soc. 2012, 134, 13902]. As by-product of the new approach, we obtain revised reactivity parameters for 36 π-nucleophiles and 32 benzhydrylium ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314972 | PMC |
http://dx.doi.org/10.1002/cphc.202200061 | DOI Listing |
Langmuir
January 2025
Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
Adsorbents with high selectivity and adsorption capacity are of significant interest for the removal of dye pollutants. Herein, we report a facile low-temperature solvothermal synthesis of clew-like CuO/CuO microspheres by using cupric acetate monohydrate as the copper resource and ethylene glycol as the solvent and morphology modulator. The synthesized CuO/CuO microspheres showed high selective adsorption to anionic dyes (e.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
Zh Nevrol Psikhiatr Im S S Korsakova
January 2025
Pirogov City Clinical Hospital No. 1, Moscow, Russia.
Objective: To study the associations of genetic markers influencing the residual reactivity of platelets during antiplatelet therapy with acetylsalicylic acid, and clinical and laboratory parameters, including parameters of the platelet hemostasis, in patients with non-cardioembolic ischemic stroke (IS) for a deeper understanding of the pathogenetic mechanisms and prediction of response to therapy and clinical outcome.
Material And Methods: The study included 296 patients (average age 64.65 [55; 76] years) undergoing treatment at the City Clinical Hospital named after.
Front Robot AI
January 2025
Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany.
In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
Introduction: Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as , and . These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!