Highly stretchable electrically conductive hydrogels have been extensively researched in recent years, especially for applications in strain and pressure sensing, electronic skin, and implantable bioelectronic devices. Herein, we present a new cross-linked complex coacervate approach to prepare conductive hydrogels that are both highly stretchable and compressive. The gels involve a complex coacervate between carboxylated nanogels and branched poly(ethylene imine), whereby the latter is covalently cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDGE). Inclusion of graphene nanoplatelets (Gnp) provides electrical conductivity as well as tensile and compressive strain-sensing capability to the hydrogels. We demonstrate that judicious selection of the molecular weight of the PEGDGE cross-linker enables the mechanical properties of these hydrogels to be tuned. Indeed, the gels prepared with a PEGDGE molecular weight of 6000 g/mol defy the general rule that toughness decreases as strength increases. The conductive hydrogels achieve a compressive strength of 25 MPa and a stretchability of up to 1500%. These new gels are both adhesive and conformal. They provide a self-healable electronic circuit, respond rapidly to human motion, and can act as strain-dependent sensors while exhibiting low cytotoxicity. Our new approach to conductive gel preparation is efficient, involves only preformed components, and is scalable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098112 | PMC |
http://dx.doi.org/10.1021/acs.biomac.1c01660 | DOI Listing |
Gels
November 2024
Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea.
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China.
Flexible sensors mimic the sensing ability of human skin, and have unique flexibility and adaptability, allowing users to interact with intelligent systems in a more natural and intimate way. To overcome the issues of low sensitivity and limited operating range of flexible strain sensors, this study presents a highly innovative preparation method to develop a conductive elastomeric sensor with a cracked thin film by combining polydimethylsiloxane (PDMS) with multiwalled carbon nanotubes (MCNT). This novel design significantly increases both the sensitivity and operating range of the sensor (strain range 0-50%; the maximum tensile sensitivity of this sensor reaches 4.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland.
Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China. Electronic address:
Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China.
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!