The biomechanical response of a human rib cage to cardiopulmonary resuscitation maneuvers was investigated by means of finite element simulations. We analyzed the effect of the location where the force was applied on the achieved compression depths and stress levels experienced by the breastbone and ribs. For compression locations on the breastbone, a caudal shift of the application area toward the breastbone tip resulted in a 17% reduction of the force required to achieve a target 5 cm compression depth. We found that the use of compression regions located on the costal cartilages would involve higher risk of rib fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285513 | PMC |
http://dx.doi.org/10.1002/cnm.3585 | DOI Listing |
J R Soc Interface
January 2025
School of Mathematics and Statistics, University of Glasgow, Scotland, UK.
The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Washington University in St Louis, Saint Louis, Missouri, USA.
Background: Consequences of osteochondral fractures associated with patellar dislocation can be severe for younger patients. Precise 3-dimensional characterization of fracture location, size, frequency, and radiographic associations remain undefined in this population.
Purpose: (1) To define the topographic characteristics of osteochondral fractures in pediatric and adolescent patients with first-time patellar dislocations and (2) to determine the relationship between these characteristics and radiographic and patient factors.
Acta Bioeng Biomech
June 2024
3School of Mechanical Engineering, Yanshan University, Hebei, China.
: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.
Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!