Terpenes are one of the largest classes of secondary metabolites that occur in all kingdoms of life and offer diverse valuable properties for food and pharma industry including pleasant odor or taste as well as antimicrobial or anticancer activities. A multitude of terpene biosynthesis pathways are known, but their efficient biotechnological exploitation requires an adequate microorganism as host which can ideally provide an optimal supply with biosynthetic isoprene precursors. Rhodobacter capsulatus, a Gram-negative, facultative anaerobic, photosynthetic non-sulfur purple bacterium belonging to the α-proteobacteria represents such a host particularly suitable for terpene production. Here, we describe methods for the expression of terpene biosynthetic enzymes in R. capsulatus and the extraction of products for analysis. At the same time, we summarize the current strategies to adjust the biosynthetic precursor supply via isoprenoid biosynthetic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1791-5_8 | DOI Listing |
Recent Pat Biotechnol
December 2024
Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.
Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.
Biochim Biophys Acta Bioenerg
January 2025
Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany. Electronic address:
Respiratory complexes, such as cytochrome oxidases, are cofactor-containing multi-subunit protein complexes that are critically important for energy metabolism in all domains of life. Their intricate assembly strictly depends on accessory proteins, which coordinate subunit associations and cofactor deliveries. The small membrane protein CcoS was previously identified as an essential assembly factor to produce an active cbb-type cytochrome oxidase (cbb-Cox) in Rhodobacter capsulatus, but its function remained unknown.
View Article and Find Full Text PDFBioresour Technol
December 2024
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China. Electronic address:
This study incorporated ZnO/ZnS nanoparticles with Rhodobacter capsulatus SB1003, forming a hybrid system to promote photo-fermentative hydrogen production. The results indicate that the material's photocatalytic activity and concentration significantly affected hydrogen yield. The addition of ZnO/ZnS exhibited a more significant auxiliary effect than ZnO and achieved an approximately 30% increase in hydrogen production compared to the control group.
View Article and Find Full Text PDFProtein engineering is an established method for tailoring enzymatic reactivity. A commonly used method is directed evolution, where the mutagenesis and natural selection process is mimicked and accelerated in the laboratory. Here, we describe a reliable method for generating saturation mutagenesis libraries by Golden Gate cloning in a broad host range plasmid containing the pBBR1 replicon.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!