Discovery of potent and versatile CRISPR-Cas9 inhibitors engineered for chemically controllable genome editing.

Nucleic Acids Res

CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

Published: March 2022

Anti-CRISPR (Acr) proteins are encoded by many mobile genetic elements (MGEs) such as phages and plasmids to combat CRISPR-Cas adaptive immune systems employed by prokaryotes, which provide powerful tools for CRISPR-Cas-based applications. Here, we discovered nine distinct type II-A anti-CRISPR (AcrIIA24-32) families from Streptococcus MGEs and found that most Acrs can potently inhibit type II-A Cas9 orthologs from Streptococcus (SpyCas9, St1Cas9 or St3Cas9) in bacterial and human cells. Among these Acrs, AcrIIA26, AcrIIA27, AcrIIA30 and AcrIIA31 are able to block Cas9 binding to DNA, while AcrIIA24 abrogates DNA cleavage by Cas9. Notably, AcrIIA25.1 and AcrIIA32.1 can inhibit both DNA binding and DNA cleavage activities of SpyCas9, exhibiting unique anti-CRISPR characteristics. Importantly, we developed several chemically inducible anti-CRISPR variants based on AcrIIA25.1 and AcrIIA32.1 by comprising hybrids of Acr protein and the 4-hydroxytamoxifen-responsive intein, which enabled post-translational control of CRISPR-Cas9-mediated genome editing in human cells. Taken together, our work expands the diversity of type II-A anti-CRISPR families and the toolbox of Acr proteins for the chemically inducible control of Cas9-based applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934645PMC
http://dx.doi.org/10.1093/nar/gkac099DOI Listing

Publication Analysis

Top Keywords

type ii-a
12
genome editing
8
acr proteins
8
ii-a anti-crispr
8
human cells
8
binding dna
8
dna cleavage
8
acriia251 acriia321
8
chemically inducible
8
anti-crispr
5

Similar Publications

Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria.

Curr Opin Struct Biol

January 2025

Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom. Electronic address:

Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV) is a leading cause of cervical cancer, with 14 subtypes classified as high-risk human papillomavirus (HR-HPV). Despite the availability of vaccines, certain regions still experience limited access. Herpes simplex virus type II (HSV-II), a common sexually transmitted infection, is hypothesized to increase the risk of HR-HPV infections.

View Article and Find Full Text PDF

Direct Vascular Effects of Angiotensin II (A Systematic Short Review).

Int J Mol Sci

December 2024

Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.

The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!