Herein, the influence of compositional engineering active site alternation on catalytic behaviour has been studied for the Ruddlesden-Popper-based system SmSrNiO. A phase change from orthorhombic ( = 0.6) to tetragonal ( = 1.0) in bulk SmSrNiO is confirmed by Rietveld (XRD) analysis, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). To alter the active sites, we fabricated thin films for = 0.6 and = 1.0 using a pulsed laser deposition technique. The electrocatalytic behaviour has been studied in an environmentally friendly medium, , a neutral medium (pH = 7), for both bulk and thin films, and parameters such as transient response, electrochemical reversibility and oxygen evolution reactivity are measured. The cyclic voltammetry curves suggest that electrochemical reversibility for thin films is governed by adsorption as opposed to the diffusion observed for bulk samples. Our investigation further suggests that moderate electroactivity can be achieved with an increase in active sites on miniaturization with the phase change.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp05955fDOI Listing

Publication Analysis

Top Keywords

thin films
12
electrocatalytic behaviour
8
bulk thin
8
behaviour studied
8
phase change
8
active sites
8
electrochemical reversibility
8
influence crystalline
4
crystalline phase
4
phase electrocatalytic
4

Similar Publications

This paper introduces a Coriolis mass flow and density sensor. The sensor is made using Surface Channel Technology (SCT) but with selective wet etching to create the channels. This method forms suspended microfluidic channels with a larger cross-sectional area.

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.

View Article and Find Full Text PDF

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!