Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311706 | PMC |
http://dx.doi.org/10.1111/pce.14295 | DOI Listing |
Ann Bot
January 2025
Agassiz Research and Development Centre, Agriculture and Agri-food Canada, Agassiz, British Columbia, Canada.
Background And Aims: Genome size varies by orders of magnitude across land plants, and the factors driving evolutionary increases and decreases in genome size vary across lineages. Bryophytes have the smallest genomes relative to other land plants and there is growing evidence for frequent whole genome duplication (WGD) across the lineage. However, the broad patterns of genome size, chromosome number, and WGD have yet to be characterized across bryophytes in a phylogenetic context.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari-Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy.
subsp. (), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load.
View Article and Find Full Text PDFFoods
January 2025
The College of Life and Geographic Sciences, Kashi University, Kashi 844000, China.
is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gene on the survival of , GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.
Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
State Key Laboratory of Desert and Oasis Ecology, Key laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!