Tannic acid-polypyrrole multifunctional coating layer enhancing the interface effect and efficient Li-ion transport of a phosphorus anode.

Nanoscale

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Published: March 2022

Phosphorus has been considered a promising anode material for lithium-ion batteries because of its high specific capacity of 2596 mA h g and safe lithiation voltage of 0.7 V. However, the practical application of the phosphorus anode is challenged by its poor cyclability associated with the dissolution of phosphorus intermediates, the enormous volume expansion and the sluggish lithiation reaction kinetics during the cycling process. Herein, a multifunctional coating layer is designed and fabricated on the surface of a phosphorus-carbon nanotube (P-CNT) electrode the facile polymerization of plant-derived tannic acid (TA) and pyrrole (Py). This coating layer shows strong adsorption of phosphorus and its derivatives, buffers the volumetric expansion of phosphorus and facilitates efficient Li-ion transport, thus enhancing phosphorus utilization during the cycling process. As a result, the P-CNT@TA-PPy hybrid exhibits a stable coulombic efficiency of 99.0% at 520 mA g after 100 cycles and a reduced volumetric expansion of 50% at 260 mA g, superior to P-CNT with its unstable coulombic efficiency and large electrode expansion of 329%. This study sheds light on the rational design of advanced phosphorus-based anodes for alkali metal-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr07987eDOI Listing

Publication Analysis

Top Keywords

coating layer
12
multifunctional coating
8
efficient li-ion
8
li-ion transport
8
phosphorus anode
8
cycling process
8
volumetric expansion
8
coulombic efficiency
8
phosphorus
7
tannic acid-polypyrrole
4

Similar Publications

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Highly sensitive and selective detection of SARS-CoV-2 spike protein S1 using optically-active nanocomposite-coated melt-blown masks.

Anal Chim Acta

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:

Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!