Objective: Following mild traumatic brain injury (mTBI), many individuals suffer from persistent post-concussive, depressive, post-traumatic stress, and sleep-related symptoms. Findings from self-report scales link these symptoms to biomarkers of neurodegeneration, although the underlying pathophysiology is unclear. Each linked self-report scale includes sleep items, raising the possibility that despite varied symptomology, disordered sleep may underlie these associations. To isolate sleep effects, we examined associations between post-mTBI biomarkers of neurodegeneration and symptom scales according to composite, non-sleep, and sleep components.
Methods: Plasma biomarkers and self-report scales were obtained from 143 mTBI-positive warfighters. Pearson's correlations and regression models were constructed to estimate associations between total, sleep, and non-sleep scale items with biomarker levels, and with measured sleep quality.
Results: Symptom severity positively correlated with biomarker levels across scales. Biomarker associations were largely unchanged when sleep items were included, excluded, or considered in isolation. Pittsburgh Sleep Quality Index demonstrated strong correlations with sleep and non-sleep items of all scales.
Conclusion: The congruency of associations raises the possibility of a common pathophysiological process underlying differing symptomologies. Given its role in neurodegeneration and mood dysregulation, sleep physiology seems a likely candidate. Future longitudinal studies should test this hypothesis, with a focus on identifying novel sleep-related therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02699052.2022.2037711 | DOI Listing |
Ageing Res Rev
January 2025
Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.
View Article and Find Full Text PDFBackground: The Amyloid-Tau-Neurodegeneration (ATN) biomarker framework for Alzheimer's disease (AD) indicates binary (presence/absence) designations for each type of pathology, without regard for anatomical distribution. Neurodegeneration is designated as positive if atrophy or hypometabolism are found on imaging. However, Clifford Jack et al.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
Background: Plasma and cerebrospinal (CSF) biomarkers are promising candidates for detecting neuropathology. While CSF biomarkers directly reflect pathophysiological processes within the central nervous system, their requirement for a lumbar puncture is a barrier to their widespread scalability in practice. Therefore, we examined cross-sectional associations of plasma biomarkers of amyloid (Aβ42/Aβ40 and pTau-181), neurodegeneration (Neurofilament Light, NfL), and neuroinflammation (Glial Fibrillary Acidic Protein, GFAP) with brain volume, cognition, and their corresponding CSF levels.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Bonn-Aachen International Center for IT (b-it), Bonn, Germany.
Background: Alzheimer's Disease (AD) is associated with sleep disturbances. Moreover, individuals with sleep disturbances have been reported to have a higher risk for developing AD. The measurement of sleep behavior therefore opens the opportunity for a potential digital biomarker of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec city, QC, Canada.
Background: Type 2 diabetes (T2D) is a prevalent health condition associated with cognitive impairment and dementia. T2D induces adverse effects not only on the pancreas but also on the liver, kidneys, muscles, fat cells, and, notably, the brain. Both T2D and Alzheimer's disease (AD) exhibit associations with neurodegeneration, yet the extent of their shared patterns of brain atrophy remains poorly understood, potentially indicating common pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!