This study examined the effect of dihydroquercetin (DHQ), also knofigurewn as taxifolin, on rotenone-induced Parkinsonism in rats. Male Wistar rats were administered 1.5 mg/kg rotenone for 10 days and subsequently treated with 0.25-1.0 mg/kg DHQ for 3 days followed by the assessment of parkinsonian symptoms. Brain striatal redox stress and neurochemical dysfunction markers were assessed spectrophotometrically. Histopathological evaluation of the striatum was done by hematoxylin and eosin staining technique. The expression of genes involved in the activation of NF-κB signaling pathway (IL-1β, TNF-α, NF-κB and IκKB), and the p53 gene in the striatum were determined by RT-qPCR. DHQ attenuated parkinsonian symptoms as well as striatal redox stress, neurochemical dysfunction, and histological alterations occasioned by rotenone toxicity. Importantly, DHQ significantly suppressed the rotenone-induced upregulation of IL-1β, NF-κB, and IκKB expression (p < 0.05) in the striatum of parkinsonian rats. DHQ demonstrated notable neurotherapeutic potential against rotenone-induced Parkinsonism in rats by improving parkinsonian symptoms (bradykinesia, catalepsy, postural instability, impaired locomotor behavior, and tremor) and neurochemical dysfunctions via modulation of genes involved in the activation of the canonical pathway of NF-κB-mediated inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23022 | DOI Listing |
Adv Biomed Res
October 2024
Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
Background: We aimed to investigate the effects of whey protein (WP) supplements in a rat model of rotenone-induced locomotor and biochemical features of Parkinson's disease (PD).
Materials And Methods: Male Wistar rats were used. Daily injections of rotenone (2 mg/kg; i.
ACS Pharmacol Transl Sci
December 2024
Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
This study aims to determine the effect of chronic hyperglycemia, induced by a high-fat diet and STZ-induced diabetes, on the development of Parkinson's disease-like characteristics. Understanding this relationship is crucial in pharmacology, neurology, and diabetes, as it could potentially lead to developing new therapeutic strategies for Parkinson's disease. Our study employed a comprehensive approach to investigate the effect of hyperglycemia on Parkinson's disease-like characteristics.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt.
The present study investigates the neuroprotective effects of the sea urchin Paracentrotus lividus gonadal extract on rotenone-induced neurotoxicity in a Parkinson's disease (PD) rat model. Parkinson's disease, characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), is exacerbated by oxidative stress and neuroinflammation. The study involved fifty Wistar rats divided into five groups: control, dimethyl sulfoxide (DMSO) control, Paracentrotus lividus gonadal extract-treated, rotenone-treated, and combined rotenone with Paracentrotus lividus gonadal extract-treated.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The pursuit of nutraceuticals to improve the quality of life for patients with neurodegenerative conditions is a dynamic field within neuropharmacology. Unfortunately, many nutraceuticals that show promise in preclinical studies fail to demonstrate significant clinical benefits in human trials, leading to their exclusion as therapeutic options. This discrepancy may stem from the categorical interpretation of preclinical and clinical results.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson's disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!