Background: According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention.
Objective And Rationale: This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered.
Search Methods: A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant.
Outcomes: A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming.
Wider Implications: This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071071 | PMC |
http://dx.doi.org/10.1093/humupd/dmac005 | DOI Listing |
Elife
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Sci Rep
December 2024
Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France.
Sex steroids influence early organization of neural structures involved in expression of sexual behavior. A critical perinatal period during which testosterone surges occur has been identified in male rodents. Data are lacking for females, whose ovarian activity starts later in the postnatal period.
View Article and Find Full Text PDFElife
December 2024
Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2025
Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Hidalgo 775, C1405BCK Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. Electronic address:
Infertility in hyperprolactinemic females is attributed to the dysregulation of GnRH release, subsequently affecting gonadotropin levels, and ultimately leading to anovulation. However, in addition to the hypothalamus, prolactin receptor (PRLR) is expressed in ovaries as well, suggesting potential local effects of PRL in cases of hyperprolactinemia. We have developed an experimental model of sulpiride (SPD)-induced hyperprolactinemia using a wild rodent, the plains vizcacha, and studied the implications of pharmacological PRL levels on folliculogenesis and steroid production.
View Article and Find Full Text PDFJ Transl Med
November 2024
Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
Background: Pituitary neuroendocrine tumors (PitNET) are among the most common intracranial tumors. Despite a frequent benign course, aggressive behavior can occur. Tumor behavior is known to be under the influence of the tumor microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!