Hemp Genome Editing-Challenges and Opportunities.

Front Genome Ed

School of Biological Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland.

Published: February 2022

Hemp ( L.) is a multipurpose crop with many important uses including medicine, fibre, food and biocomposites. This plant is currently gaining prominence and acceptance for its valuable applications. Hemp is grown as a cash crop for its novel cannabinoids which are estimated to be a multibillion-dollar downstream market. Hemp cultivation can play a major role in carbon sequestration with good CO to biomass conversion in low input systems and can also improve soil health and promote phytoremediation. The recent advent of genome editing tools to produce non-transgenic genome-edited crops with no trace of foreign genetic material has the potential to overcome regulatory hurdles faced by genetically modified crops. The use of Artificial Intelligence - mediated trait discovery platforms are revolutionizing the agricultural industry to produce desirable crops with unprecedented accuracy and speed. However, genome editing tools to improve the beneficial properties of hemp have not yet been deployed. Recent availability of high-quality genome sequences from several strains (cannabidiol and tetrahydrocannabinol balanced and CBD/THC rich strains) have paved the way for improving the production of valuable bioactive molecules for the welfare of humankind and the environment. In this context, the article focuses on exploiting advanced genome editing tools to produce non-transgenic hemp to improve the most industrially desirable traits. The challenges, opportunities and interdisciplinary approaches that can be adopted from existing technologies in other plant species are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847435PMC
http://dx.doi.org/10.3389/fgeed.2022.823486DOI Listing

Publication Analysis

Top Keywords

genome editing
12
editing tools
12
tools produce
8
produce non-transgenic
8
hemp
6
hemp genome
4
genome editing-challenges
4
editing-challenges opportunities
4
opportunities hemp
4
hemp multipurpose
4

Similar Publications

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

Advances in A-to-I RNA editing in cancer.

Mol Cancer

December 2024

NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.

RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Gene targeting (GT) is a powerful tool for manipulating endogenous genomic sequences as intended. However, its efficiency is rather low, especially in seed plants. Numerous attempts have been made to improve the efficiency of GT via the CRISPR/Cas systems in plants, but these have not been sufficiently effective to be used routinely by everyone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!