Automated surface vessels must integrate many tasks and motions at the same time. Moreover, vessels as well as monitoring and control services need to react to physical disturbances, to dynamically allocate software resources available within a particular environment, and to communicate with various other actors in particular navigation and traffic situations. In this work, the responsibility for the situational awareness is given to a mediator that decides : 1) to assess the impact of the actual physical environment on the quality and performance of the ongoing task executions; 2) to make sure these tasks satisfy the system requirements; and 3) to be robust against disturbances. This paper proposes a set of semantic world models within the context of inland waterway transport, and discusses policies and methodologies to compose, use, and connect these models. Model-conform entities and relations are composed dynamically, that is, corresponding to the opportunities and challenges offered by the actual situation. The semantic world models discussed in this work are divided into two main categories: 1) the semantic description of a vessel's properties and relationships, called the , or body model, and 2) the semantic description of its local environment, called the , or map. A range of experiments illustrate the potential of using such models to decide the reactions of the application at runtime. Furthermore, three dynamic, context-dependent, ship domains are integrated in the map as two-dimensional geometric entities around a moving vessel to increase the situational awareness of automated vessels. Their geometric representations depend on the associated relations; for example, with: 1) the motion of the vessel, 2) the actual, desired, or hypothesised tasks, 3) perception sensor information, and 4) other geometries, e.g., features from the Inland Electronic Navigational Charts. The ability to unambiguously understand the environmental context, as well as the motion or position of surrounding entities, allows for resource-efficient and straightforward control decisions. The semantic world models facilitate knowledge sharing between actors, and significantly enhance explainability of the actors' behaviour and control decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849009 | PMC |
http://dx.doi.org/10.3389/frobt.2021.739062 | DOI Listing |
BMC Bioinformatics
January 2025
Department of Information Technology, Vardhaman College of Engineering, Shamshabad, Hyderabad, India.
Background: Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep learning (DL) methods have emerged.
View Article and Find Full Text PDFBioinformatics
January 2025
School of Computer Science and engineering, Central South University, Changsha, 410083, China.
Motivation: T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions.
View Article and Find Full Text PDFBiosystems
January 2025
ICube Laboratory, UMR 7357, Department of Mechanics, Civil Engineering and Energetics Team - GCE, CNRS, University of Strasbourg, INSA Strasbourg, Department of Architecture, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France; MAP-Aria Laboratory, UMR CNRS/MCC 3495, École Nationale Supérieure d'Architecture de Lyon, 3 rue Maurice Audin, BP 170, 69512 Vaulx-en-Velin Cedex, France. Electronic address:
This paper explores the intersections of constructal thermodynamics, and its semantic ontology within the context of autopoetic, digital and computational design in protocell inspired numerical architectural and urban narratives that are examined here as open systems. Constructal law is the thermodynamic theory based on the analysis of fluxes across the border of an open system. Protocells, as dynamic and adaptive open finite size systems, serve in this paper as a compelling metaphor and design model for responsive and sustainable manmade architectural and urban environments.
View Article and Find Full Text PDFPLoS One
January 2025
Clinic of Neonatology, Department of Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
It has been widely assessed that very preterm children (<32 weeks gestational age) present language and memory impairments compared with full-term children. However, differences in their underlying semantic memory structure have not been studied yet. Nevertheless, the way concepts are learned and organized across development relates to children's capacities in retrieving and using information later.
View Article and Find Full Text PDFJ Vasc Access
January 2025
Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK.
Background: The information and decision support needs required to embed a patient-centred strategy are challenging, as several haemodialysis vascular access strategies are possible with significant differences in short- and long-term outcomes of potential treatment options. We aimed to explore and describe stakeholder perspectives on information needs when making decisions about vascular access (VA) for haemodialysis.
Methods: We performed thematic analysis of seven (six online, one in person) focus group discussions including transcripts, post-it phrases and text responses with 14 patients and 12 vascular access professionals (four nephrologists, three surgeons and five nurses - Vascular access nurse specialists/Education and dialysis nurses) who participated in at total of six online and one in person focus group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!