A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of under alkali and drought stresses. | LitMetric

Alkali and drought stresses are increasing severe environmental problems throughout the world, especially in the Songnen grassland of northern China. is the dominant grass species in the Songnen grassland of northern China and the most promising species for grassland restoration. Arbuscular mycorrhizal fungi (AMF) can colonize 80% of vascular plants, which can enhance the growth of host plants and provide extrinsic protection against abiotic stresses. However, little is known about the interaction effect of alkali and drought stresses on plant-AM symbionts. Here, seedlings of inoculated with or without mycorrhizae were cultivated in soil with 0, 100 or 200 mM NaHCO under 0, 5 or 10% (w/v) PEG treatment, and the changes in growth, osmotic adjustment substances and ions were measured. The results showed that the interaction of alkali and drought stresses caused greater seedling growth inhibition than either single alkali or drought stress due to ion toxicity and oxidative damage. Mycorrhizae could alleviate the growth inhibition of seedlings under alkali or drought stress. The interaction of alkali and drought stresses did not affect the alleviating effect of mycorrhizae on seedling growth but improved the osmotic regulation ability and ionic balance of the seedlings. Our results clearly show different effects of the interaction of alkali and drought stresses versus a single stress (alkali or drought) on plant development and provide new insights into the positive effect of arbuscular mycorrhizal fungi on host plants under such stress conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818268PMC
http://dx.doi.org/10.7717/peerj.12890DOI Listing

Publication Analysis

Top Keywords

alkali drought
36
drought stresses
24
interaction alkali
16
arbuscular mycorrhizal
12
mycorrhizal fungi
12
alkali
9
drought
9
seedlings alkali
8
songnen grassland
8
grassland northern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!