Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alkali and drought stresses are increasing severe environmental problems throughout the world, especially in the Songnen grassland of northern China. is the dominant grass species in the Songnen grassland of northern China and the most promising species for grassland restoration. Arbuscular mycorrhizal fungi (AMF) can colonize 80% of vascular plants, which can enhance the growth of host plants and provide extrinsic protection against abiotic stresses. However, little is known about the interaction effect of alkali and drought stresses on plant-AM symbionts. Here, seedlings of inoculated with or without mycorrhizae were cultivated in soil with 0, 100 or 200 mM NaHCO under 0, 5 or 10% (w/v) PEG treatment, and the changes in growth, osmotic adjustment substances and ions were measured. The results showed that the interaction of alkali and drought stresses caused greater seedling growth inhibition than either single alkali or drought stress due to ion toxicity and oxidative damage. Mycorrhizae could alleviate the growth inhibition of seedlings under alkali or drought stress. The interaction of alkali and drought stresses did not affect the alleviating effect of mycorrhizae on seedling growth but improved the osmotic regulation ability and ionic balance of the seedlings. Our results clearly show different effects of the interaction of alkali and drought stresses versus a single stress (alkali or drought) on plant development and provide new insights into the positive effect of arbuscular mycorrhizal fungi on host plants under such stress conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818268 | PMC |
http://dx.doi.org/10.7717/peerj.12890 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!