Capsaicinoids, volatile compounds, and fatty acids were analyzed in red pepper seeds to determine any changes at different roasting temperatures. The contents of capsaicin and dihydrocapsaicin decreased as roasting temperatures increased. 3-Ethyl-2,5-dimethylpyrazine, 2,3,5,6-tetramethylpyrazine, 2-methoxy-3-(2-methylpropyl)pyrazine, 1-methylpyrrole, hexanedial, benzeneacetaldehyde, 2-acetylfuran, and butane-2,3-diol were newly detected in red pepper seeds roasted at 100 °C. Concentrations of pyrazines, pyrroles, oxygen-containing heterocyclic compounds, carbonyls, and alcohols increased rapidly in red pepper seeds as the roasting temperature increased. Such compounds could contribute roasted, grilled, and sweet odor notes to roasted red pepper seeds. Linoleic acid was the predominant fatty acid in all red pepper seeds. There were no significant differences in polyunsaturated fatty acids in red pepper seeds as roasting temperature increased. In conclusion, roasting red pepper seeds could be used in thermally processed foods because during roasting their pungency is reduced, desirable savory odors are enhanced, and the levels of polyunsaturated fatty acids remain unchanged.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817957 | PMC |
http://dx.doi.org/10.1007/s10068-021-01023-6 | DOI Listing |
Plants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.
Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules.
View Article and Find Full Text PDFChemMedChem
January 2025
University of Michigan Michigan Medicine, Internal Medicine, 2800 Plymouth Rd, NCRC 26-220S, 48109, Ann Arbor, UNITED STATES OF AMERICA.
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.
View Article and Find Full Text PDFMetabolites
January 2025
Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China.
Background: Millet peppers have rich and diverse germplasm resources. It is of great significance to characterize their phenotypes and physicochemical indicators.
Methods: 30 millet germplasms were selected to measure the fruit length and width, flesh thickness, number of ventricles, fruit stalk length, and single fruit weight, and the texture characteristics of fruit such as hardness, cohesiveness, springiness, gumminess, and chewiness were determined by a texture analyzer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!