Breast cancer remains a dangerous disease, and delving the molecular mechanism of breast cancer is still necessary. To illustrate the role of miR-511-5p, TCGA database was used to excavate the abundance of miR-511-5p, and the miR-511-5p level was measured in the pathological tissues and tumor cell lines. Moreover, the targets of miR-511-5p were identified with miRDIP and GEPIA and then were used for functional enrichment analysis. Besides, the targets of miR-511-5p were analyzed with the protein-protein interaction (PPI) network for the hub nodes, and then the expression levels of the hub nodes were visualized with the GEPIA database. The results showed that miR-511-5p was significantly downregulated in multiple types of tumor samples in the online database, and the downregulated miR-511-5p was also found in pathological tissues and tumor cell lines. Moreover, 48 genes were identified as the potential targets of miR-511-5p by miRDIP and GEPIA databases and enriched in cell cycle, PI3K/AKT, and P53 pathways. Besides, seven genes including BRCA1, FN1, CCNE1, CCND1, CHEK1, BUB3, and CDC25A were identified as the hub nodes by the PPI network, and CCNE1 and CHEK1 were confirmed to be related with the prognostic survival of the patients with breast cancer. In conclusion, the proofs in this study suggest that reduced miR-511-5p was a biomarker event for breast cancer, and CCNE1 and CHEK1 served as potential targets of miR-511-5p to involve the progression of breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853816 | PMC |
http://dx.doi.org/10.1155/2022/7146338 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!