Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849965PMC
http://dx.doi.org/10.1155/2022/1953861DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
tissue repair
8
tissue
7
applications electrospun
4
electrospun nanofibrous
4
nanofibrous scaffold
4
scaffold tissue
4
engineering
4
engineering tissue
4
engineering area
4

Similar Publications

Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.

View Article and Find Full Text PDF

Rhinoplasty is one of the major surgical procedures most popular and it is generally performed modelling the internal bones and cartilage using a closed approach to reduce the damage of soft tissue, whose final shape is determined by means of their new settlement over the internal remodelled rigid structures. An optimal planning, achievable thanks to advanced acquisition of 3D images and thanks to the virtual simulation of the intervention via specific software. Anyway, the final result depends also on factors that cannot be totally predicted regarding the settlement of soft tissues on the rigid structures, and a final objective check would be useful to eventually perform some adjustments before to conclude the intervention.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!