Transgene integration typically takes place in an easy-to-transform laboratory variety before the transformation event is introgressed through backcrosses to elite cultivars. As new traits are added to existing transgenic lines, site-specific integration can stack new transgenes into a previously created transgenic locus. site-specific integration minimizes the number of segregating loci to assemble into a breeding line, but cannot break genetic linkage between the transgenic locus and nearby undesirable traits. In this study, we describe an additional feature of an gene-stacking scheme, in which the Cre (control of recombination) recombinase not only deletes transgenic DNA no longer needed after transformation but also mediates recombination between homologous or non-homologous chromosomes. Although the target site must first be introgressed through conventional breeding, subsequent transgenes inserted into the same locus would be able to use Cre-mediated translocation to expedite a linkage drag-free introgression to field cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850970 | PMC |
http://dx.doi.org/10.3389/fpls.2022.828960 | DOI Listing |
Sci Rep
December 2024
Department of Computer Networks and Systems, Silesian University of Technology, 44-100, Gliwice, Poland.
Methods for scoring matrix adjustment decrease the significance of biased residues to better detect homology between protein sequences. This is because non-homologous proteins often contain fragments with non-standard compositions that are strikingly similar to each other. However, these fragments are also functionally important in proteins and are receiving an increasing attention from the scientific community.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.
View Article and Find Full Text PDFToxins (Basel)
December 2024
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.
View Article and Find Full Text PDFMetabolites
December 2024
The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.
General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.
View Article and Find Full Text PDFRadiat Res
December 2024
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!