Cardiovascular diseases (CVD) are major causes of death worldwide. Recently, new roles for intestinal microbiota in pathology and treatment of CVD have been proposed. Butyrate, a bacterial metabolite, is synthesized in the gut and performs most of its functions in there. However, researchers have discovered that butyrate could enter to portal vein and interact with various organs. Butyrate exhibits a broad range of pharmacological activities, including microbiome modulator, anti-inflammatory, anti-obesity, metabolic pathways regulator, anti-angiogenesis, and antioxidant. In this article we review evidence supporting a potentially therapeutic role for butyrate in CVD and the mechanisms and pathways involved in the cardio-protective effects of butyrate from the gut and circulation to the nervous system. In summary, although butyrate exhibits a wide variety of biological activities in different pathways including energy homeostasis, glucose and lipid metabolism, inflammation, oxidative stress, neural signaling, and epigenetic modulation in experimental settings, it remains unclear whether these findings are clinically relevant and whether the molecular pathways are activated by butyrate in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847574 | PMC |
http://dx.doi.org/10.3389/fphar.2021.837509 | DOI Listing |
Orphanet J Rare Dis
January 2025
Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
Background: Lynch syndrome (LS)-associated colorectal cancer (CRC) always ascribes to pathogenic germline mutations in mismatch repair (MMR) genes. However, the penetrance of CRC varies among those with the same MMR gene mutation. Thus, we hypothesized that the gut microbiota is also involved in CRC development in LS families.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Pharmacy College, Al-Farahidi University, Baghdad, Iraq.
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma.
View Article and Find Full Text PDFEuropace
January 2025
Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Sanye Oceanographic Instinstion, Ocean University of China, Sanya 572000, China. Electronic address:
Low molecular weight chondroitin sulfate (CS) has gained considerable attention for its superior bioactivity compared to native CS. In this study, the mechanisms of low molecular weight chondroitin sulfate from hybrid sturgeon cartilage (LMSCS), prepared using the HO/Vc system, on the remission of osteoarthritis (OA) were investigated both in in vitro and in vivo. A Caco-2/SW1353 co-culture cell model and a monosodium iodoacetate (MIA)-induced OA mouse model were used to validate its inhibited apoptosis, anti-inflammatory effects, and intestinal flora modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!