Purpose: Nanoparticles (NPs) decorated with functional ligands are promising candidates for cancer diagnosis and treatment. However, numerous studies have shown that chemically coupled targeting moieties on NPs lose their targeting capability in the biological milieu because they are shielded or covered by a "protein corona". Herein, we construct a functional magnetosome that recognizes and targets cancer cells even in the presence of protein corona.

Methods: Magnetosomes (BMPs) were extracted from magnetotactic bacteria, (MSR-1), and decorated with trastuzumab (TZ) via affibody (RA) and glutaraldehyde (GA). The engineered BMPs are referred to as BMP-RA-TZ and BMP-GA-TZ. Their capacities to combine HER2 were detected by ELISA, the quantity of plasma corona proteins was analyzed using LC-MS. The efficiencies of targeting SK-BR-3 were demonstrated by confocal laser scanning microscopy and flow cytometry.

Results: Both engineered BMPs contain up to ~0.2 mg TZ per mg of BMP, while the quantity of HER2 binding to BMP-RA-TZ is three times higher than that binding to BMP-GA-TZ. After incubation with normal human plasma or IgG-supplemented plasma, GA-TZ-containing BMPs have larger hydrated radii and more surface proteins in comparison with RA-TZ-containing BMPs. The TZ-containing BMPs all can be targeted to and internalized in the HER2-overexpressing breast cancer cell line SK-BR-3; however, their targeting efficiencies vary considerably: 50-75% for RA-TZ-containing BMPs and 9-19% for GA-TZ-containing BMPs. BMPs were incubated with plasma (100%) and cancer cells to simulate human in vivo environment. In this milieu, BMP-RA-TZ uptake efficiency of SK-BR-3 reaches nearly 80% (slightly lower than for direct interaction with BMP-RA-TZ), whereas the BMP-GA-TZ uptake efficiency is <17%.

Conclusion: Application of the RA scaffold promotes and orients the arrangement of targeting ligands and reduces the shielding effect of corona proteins. This strategy improves the targeting capability and drug delivery of NP in a simulated in vivo milieu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847798PMC
http://dx.doi.org/10.2147/IJN.S338349DOI Listing

Publication Analysis

Top Keywords

bmps
9
cancer cells
8
engineered bmps
8
bmp-ra-tz bmp-ga-tz
8
ga-tz-containing bmps
8
ra-tz-containing bmps
8
uptake efficiency
8
strategy avoiding
4
avoiding protein
4
protein corona
4

Similar Publications

Methimazole disrupted skeletal ossification and muscle fiber transition in Bufo gargarizans larvae.

Ecotoxicol Environ Saf

January 2025

Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China. Electronic address:

Methimazole (MMI) is an emerging endocrine disrupting chemical (EDC) due to its increasing use in the treatment of thyrotoxicosis (hyperthyroidism), but its potential impact on amphibian development remains largely unexplored. In the present study, the effects of 8 mg/L MMI and 1 μg/L thyroxine (T4) exposure on skeletal ossification and muscle development in Bufo gargarizans tadpoles were comprehensively investigated by double skeletal staining, histological analysis and RNA sequencing. Our results indicated that MMI treatment down-regulated the expression levels of ossification-related genes (e.

View Article and Find Full Text PDF

The presence of biodegradable microplastics (BMPs) alongside toxic metals in soil significantly threatens plant health. Current research mainly focuses on the effects of original BMPs. In contrast, the specific impacts of ultraviolet (UV)-aged BMPs and their interaction with Cadmium (Cd) on seed germination and growth are unclear.

View Article and Find Full Text PDF

This review examines intrinsic and extrinsic augmentation techniques for uniting hand and upper extremity fractures, including bone morphogenic proteins (BMPs), platelet-rich plasma (PRP), low-intensity pulsed ultrasound (LIPUS), and pulsed electromagnetic fields (PEMF). While BMPs, PRP, LIPUS, and PEMF show potential in accelerating bone healing and reducing nonunion rates, their clinical adoption is limited by high costs and inconsistent results. This paper focuses on understanding the efficacy of these techniques, their drawbacks, and potential next steps for the field.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!