COVID-19 has impacted the health and livelihoods of billions of people since it emerged in 2019. Vaccination for COVID-19 is a critical intervention that is being rolled out globally to end the pandemic. Understanding the spatial inequalities in vaccination coverage and access to vaccination centres is important for planning this intervention nationally. Here, COVID-19 vaccination data, representing the number of people given at least one dose of vaccine, a list of the approved vaccination sites, population data and ancillary GIS data were used to assess vaccination coverage, using Kenya as an example. Firstly, physical access was modelled using travel time to estimate the proportion of population within 1 hour of a vaccination site. Secondly, a Bayesian conditional autoregressive (CAR) model was used to estimate the COVID-19 vaccination coverage and the same framework used to forecast coverage rates for the first quarter of 2022. Nationally, the average travel time to a designated COVID-19 vaccination site (n = 622) was 75.5 min (Range: 62.9 - 94.5 min) and over 87% of the population >18 years reside within 1 hour to a vaccination site. The COVID-19 vaccination coverage in December 2021 was 16.70% (95% CI: 16.66 - 16.74) - 4.4 million people and was forecasted to be 30.75% (95% CI: 25.04 - 36.96) - 8.1 million people by the end of March 2022. Approximately 21 million adults were still unvaccinated in December 2021 and, in the absence of accelerated vaccine uptake, over 17.2 million adults may not be vaccinated by end March 2022 nationally. Our results highlight geographic inequalities at sub-national level and are important in targeting and improving vaccination coverage in hard-to-reach populations. Similar mapping efforts could help other countries identify and increase vaccination coverage for such populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841160 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2022.02.035 | DOI Listing |
Vaccines (Basel)
January 2025
Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway.
Background/objectives: Human papillomavirus (HPV) is the primary cause of high-grade cervical lesions and cervical cancer worldwide. In Norway, HPV vaccination was introduced in 2009 for seventh-grade girls and extended through a catch-up program from 2016 to 2019 for women born between 1991 and 1996. This study evaluates the impact of the catch-up vaccination program on the incidence of HPV and high-grade cervical lesions in Troms and Finnmark.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China.
Human papillomavirus (HPV) is a major global health issue and is recognized as the leading cause of cervical cancer. While prophylactic vaccination programs have led to substantial reductions in both HPV infection rates and cervical cancer incidence, considerable burdens of HPV-related diseases persist, particularly in developing countries with inadequate vaccine coverage and uptake. The development of therapeutic vaccines for HPV represents an emerging strategy that has the potential to bolster the fight against cervical cancer.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
South Eastern Sydney Public Health Unit, Sydney, NSW 2031, Australia.
School-based immunization programs are crucial for equitable vaccine coverage, yet their success depends on parental consent processes. This study investigates patterns of vaccine decision-making within Australia's school-based immunization program, specifically focusing on human papillomavirus (HPV) and diphtheria-tetanus-pertussis (dTpa) vaccines offered free to adolescents aged 12-13. This qualitative study was conducted in the South Eastern Sydney Local Health District (2022-2023).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy.
Background/objectives: Rotavirus (RV) is the primary cause of gastroenteritis in children worldwide, contributing significantly to morbidity and mortality, particularly among children under five years of age. The introduction of Rotavirus vaccines (RVV) has markedly reduced RV-related childhood deaths, especially in Europe, where substantial reductions in hospitalizations and disease prevalence have been observed. Despite these advances, RVV uptake in Italy remains below the desired targets, with notable regional disparities.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Institute of Immunization and Prevention, Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China.
: China has a high incidence rate of varicella yet a low coverage rate of the varicella vaccine (VarV), with safety concerns being a leading cause of the lack of vaccination willingness. This study aimed to describe VarV-related adverse events following immunization (AEFIs) and analyze their characteristics in Zhejiang, China, 2020-2022. : VarV-related AEFIs in Zhejiang Province from 1 January 2020 to 31 December 2022 were collected through the Chinese National AEFI Information System (CNAEFIS) for a descriptive epidemiological analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!