Purpose: To compare the spectral performance of three rapid kV switching dual-energy CT (DECT) systems on virtual monoenergetic images (VMIs) at low-energy levels on abdominal imaging.

Methods: A multi-energy phantom was scanned on three DECT systems equipped with three different gemstone spectral imaging (GSI) platforms: GSI (1st generation, GSI-1st), GSI-Pro (2nd generation, GSI-2nd ), and GSI-Xtream (3rd generation, GSI-3rd). Acquisitions on the phantom were performed with a CTDI close to 11mGy. For all platforms, raw data were reconstructed using filtered-back projection (FBP) and a hybrid iterative reconstruction algorithm (ASIR-V at 50%; AV50). A deep-learning image reconstruction (DLR) algorithm (TrueFidelity) was used only for the GSI-3rd. Noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated from 40 to 80 keV of VMIs. A detectability index (d') was computed to assess the detection of two contrast-enhanced lesions according to the keV level used.

Results: For all GSI platforms, the noise magnitude decreased from 40 to 70 keV, and using AV50 compared to FBP. The average NPS spatial frequency (f ) and spatial resolution (TTF ) were similar from 40 to 70 keV and decreased with AV50 compared to FBP. Compared to AV50, using DLR reduced the noise magnitude (-27% ± 3%) and improved f values (10% ± 0%) and altering spatial resolution (2% ± 5%). For the two lesions, d' values peaked at 70 keV for GSI-1st and GSI-2nd platforms and at 40/50 keV for GSI-3rd, for all reconstruction algorithms. The highest d' values were found for the GSI-3rd with DLR.

Conclusion: Differences in image quality were found between the GSI platforms for VMIs at low keV. The new DLR algorithm on the GSI-3rd platform reduced noise and improved spatial resolution and detectability without changing the noise texture for VMIs at low keV. The choice of the best energy level in VMIs depends on the platform and the reconstruction algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15558DOI Listing

Publication Analysis

Top Keywords

gsi platforms
12
spatial resolution
12
image quality
8
systems virtual
8
virtual monoenergetic
8
monoenergetic images
8
dect systems
8
reconstruction algorithm
8
dlr algorithm
8
kev
8

Similar Publications

Tissue-specific vitellogenesis and 17β-estradiol facilitate ovarian maturation of the swimming crab Portunus trituberculatus.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Aquatic Animal Breeding Center of Shanghai University Knowledge Service Platform, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The present study investigated the changes of expression and localization of PtVg mRNA, tissue Vg/ Vn concentrations, the contents of progesterone and 17ß-estradiol during the ovarian development of P. trituberculatus. The results showed that: 1) The most abundant mRNA levels of PtVg were found in stage IV, and hepatopancreatic PtVg mRNA was markedly greater than that in ovaries from stage II to stage V.

View Article and Find Full Text PDF

Unlocking Nanoprecipitation: A Pathway to High Reversibility in Nanofluidic Memristors.

ACS Appl Mater Interfaces

October 2024

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina.

Solid-state nanochannels have emerged as a promising platform for the development of ionic circuit components with analog properties to their traditional electronic counterparts. In the last years, nanofluidic devices with memristive properties have attracted special interest due to their applicability in, for example, the construction of brain-like computing systems. In this work, an asymmetric track-etched nanofluidic channel with memory-enhanced ion transport is reported.

View Article and Find Full Text PDF
Article Synopsis
  • The purpose of the study was to compare the dosimetric characteristics of ZAP-X stereotactic radiosurgery for brain metastasis against CyberKnife (CK) and Gamma Knife (GK) platforms.
  • Thirteen patients were analyzed retrospectively, with treatment plans using comparable dosages and constraints, examining multiple dosimetric parameters such as conformity index (CI) and treatment time.
  • Results indicated that while ZAP-X had advantages like lower treatment time and fewer monitor units compared to CK, it performed variably against GK, particularly in specific dose parameters and impact on brain tissue.
View Article and Find Full Text PDF

Manipulating Ion Transport Regimes in Nanomembranes via a "Pore-in-Pore" Approach Enabled by the Synergy of Metal-Organic Frameworks and Solid-State Nanochannels.

ACS Nano

July 2024

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.

Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel.

View Article and Find Full Text PDF
Article Synopsis
  • - Direct laser acceleration (DLA) of electrons in near-critical density (NCD) plasmas is showing promise for high-energy laser applications, particularly in Inertial Confinement Fusion research.
  • - Experiments at the PHELIX sub-PW laser revealed efficient and highly directed betatron radiation from DLA electrons, producing around (3.4 ± 0.4)·10 photons per keV per sr at 10 keV photon energy.
  • - The results align well with particle-in-cell simulations, indicating that using low-density pre-ionized foams could lead to innovative advancements in high energy density research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!