Purpose: To compare the spectral performance of three rapid kV switching dual-energy CT (DECT) systems on virtual monoenergetic images (VMIs) at low-energy levels on abdominal imaging.
Methods: A multi-energy phantom was scanned on three DECT systems equipped with three different gemstone spectral imaging (GSI) platforms: GSI (1st generation, GSI-1st), GSI-Pro (2nd generation, GSI-2nd ), and GSI-Xtream (3rd generation, GSI-3rd). Acquisitions on the phantom were performed with a CTDI close to 11mGy. For all platforms, raw data were reconstructed using filtered-back projection (FBP) and a hybrid iterative reconstruction algorithm (ASIR-V at 50%; AV50). A deep-learning image reconstruction (DLR) algorithm (TrueFidelity) was used only for the GSI-3rd. Noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated from 40 to 80 keV of VMIs. A detectability index (d') was computed to assess the detection of two contrast-enhanced lesions according to the keV level used.
Results: For all GSI platforms, the noise magnitude decreased from 40 to 70 keV, and using AV50 compared to FBP. The average NPS spatial frequency (f ) and spatial resolution (TTF ) were similar from 40 to 70 keV and decreased with AV50 compared to FBP. Compared to AV50, using DLR reduced the noise magnitude (-27% ± 3%) and improved f values (10% ± 0%) and altering spatial resolution (2% ± 5%). For the two lesions, d' values peaked at 70 keV for GSI-1st and GSI-2nd platforms and at 40/50 keV for GSI-3rd, for all reconstruction algorithms. The highest d' values were found for the GSI-3rd with DLR.
Conclusion: Differences in image quality were found between the GSI platforms for VMIs at low keV. The new DLR algorithm on the GSI-3rd platform reduced noise and improved spatial resolution and detectability without changing the noise texture for VMIs at low keV. The choice of the best energy level in VMIs depends on the platform and the reconstruction algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15558 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
December 2024
Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Aquatic Animal Breeding Center of Shanghai University Knowledge Service Platform, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
The present study investigated the changes of expression and localization of PtVg mRNA, tissue Vg/ Vn concentrations, the contents of progesterone and 17ß-estradiol during the ovarian development of P. trituberculatus. The results showed that: 1) The most abundant mRNA levels of PtVg were found in stage IV, and hepatopancreatic PtVg mRNA was markedly greater than that in ovaries from stage II to stage V.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina.
Solid-state nanochannels have emerged as a promising platform for the development of ionic circuit components with analog properties to their traditional electronic counterparts. In the last years, nanofluidic devices with memristive properties have attracted special interest due to their applicability in, for example, the construction of brain-like computing systems. In this work, an asymmetric track-etched nanofluidic channel with memory-enhanced ion transport is reported.
View Article and Find Full Text PDFBMC Cancer
August 2024
Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
ACS Nano
July 2024
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel.
View Article and Find Full Text PDFSci Rep
June 2024
Institute for Applied Physics (IAP), Goethe University Frankfurt, Frankfurt am Main, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!