AI Article Synopsis

Article Abstract

The ability of cisplatin (cis-diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted attention and concern for a long time, but the molecular mechanism of action for cisplatin is not clear. MicroRNA-483 is involved in several diseases, such as tumorigenesis and osteoarthritis, but its renal target and potential role in AKI are unknown. In this study, we explored the pathogenic role and underlying mechanism of miR-483-5p in cisplatin-induced AKI, using transgenic mice, clinical specimen, and in vitro cell line. We found that miR-483-5p was significantly upregulated by cisplatin in a cisplatin-induced mouse model, in serum samples of patients who received cisplatin therapy, and in NRK-52E cells. Overexpression of miR-483-5p in mouse kidneys by stereotactic renal injection of lentiviruses mediated miR-483-5p or generation of conditional miR-483-overexpressing transgenic mice accentuated cisplatin-induced AKI by increasing oxidative stress, promoting apoptosis, and inhibiting autophagy of tubular cells. Furthermore, our results revealed miR-483-5p directly targeted to GPX3, overexpression of which rescued cisplatin-induced AKI by inhibiting oxidative stress and apoptosis of tubular cells, but not by regulating autophagy. Collectively, miR-483-5p is upregulated by cisplatin and exacerbates cisplatin-induced AKI via negative regulation of GPX3 and contributing oxidative stress and tubular cell apoptosis. These findings reveal a pathogenic role for miR-483-5p in cisplatin-induced AKI and suggest a novel target for the diagnosis and treatment of AKI.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41374-022-00737-3DOI Listing

Publication Analysis

Top Keywords

cisplatin-induced aki
20
oxidative stress
12
acute kidney
8
kidney injury
8
aki
8
pathogenic role
8
mir-483-5p cisplatin-induced
8
transgenic mice
8
mir-483-5p upregulated
8
upregulated cisplatin
8

Similar Publications

Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.

Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).

View Article and Find Full Text PDF

Cisplatin is a widely used anticancer drug, but its accumulation in renal tubular epithelial cells (TECs) can cause acute kidney injury. Phosphoseryl-tRNA kinase (PSTK) is an intermediate product produced under oxidative stress conditions. This study aimed to elucidate whether PSTK could protect TECs and its possible mechanisms.

View Article and Find Full Text PDF

Ferroptosis plays a key role in cisplatin-induced acute kidney injury (AKI). Bergenin, which is extracted from Ardisiae Japonicae Herba and has long been used in folk tea and herbal tea drinks, is known to activate Nrf2 and has anti-inflammatory and antioxidant properties, however, its protective influence on CI-AKI has not been elucidated. We used models of cisplatin-induced nephrotoxicity in vitro and CI-AKI models in vivo.

View Article and Find Full Text PDF

Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!