Biomechanical changes at the adjacent segments induced by a lordotic porous interbody fusion cage.

Comput Biol Med

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China. Electronic address:

Published: April 2022

Biomechanical changes at the adjacent segments after interbody fusion are common instigators of adjacent segment degeneration (ASD). This study aims to investigate how the presence of a lordotic porous cage affects the biomechanical performance of the adjacent segments. A finite element model (FEM) of a lumbar spine implanted with a lordotic cage at L3-L4 was validated by in-vitro testing. The stress distribution on the cage and range of motion (ROM) of L3-L4 were used to assess the stability of the implant. Three angles of cage (0° = non-restoration, 7° = normal restoration and 11° = over-restoration) were modelled with different porosities (0%, 30% and 60%) and evaluated in the motions of flexion, extension, lateral bending and rotation. The ROM, intervertebral disc pressure (IDP) and facet joint force (FJF) were used to evaluate biomechanical changes at the adjacent segments in each model. The results indicated that porous cages produced more uniform stress distribution, but cage porosity did not influence the ROM, IDP and FJF at L2-L3 and L4-L5. Increasing the cage lordotic angle acted to decrease the ROM and IDP, and increase the FJF of L4-L5, but did not alter the ROM of L2-L3. In conclusion, changes in ROM, IDP and FJF at the adjacent segments were mainly influenced by the lordotic angle of the cage and not by the porosity. A larger angle of lordotic cage was shown to reduce the ROM and IDP, and increase the FJF of the lower segment (L4-L5), but had little effect on the ROM of the upper segment (L2-L3).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105320DOI Listing

Publication Analysis

Top Keywords

adjacent segments
20
rom idp
16
biomechanical changes
12
changes adjacent
12
cage
9
lordotic porous
8
interbody fusion
8
cage biomechanical
8
lordotic cage
8
stress distribution
8

Similar Publications

Objective: Knee-adjacent subcutaneous fat (kaSCF) has emerged as a potential biomarker and risk factor for OA progression. This study aims to develop an AI-based tool for the automatic segmentation of kaSCF thickness and evaluate the cross-sectional associations between kaSCF, cartilage thickness, MRI-based cartilage T relaxation time, knee pain, and muscle strength independent of BMI.

Design: Baseline 3.

View Article and Find Full Text PDF

A platform combining automatic segmentation and automatic measurement of the maxillary sinus and adjacent structures.

Clin Oral Investig

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.

Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.

Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.

View Article and Find Full Text PDF

Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.

View Article and Find Full Text PDF

: The aim of this study was to investigate the incidence of vertebral refractures following percutaneous kyphoplasty (PKP) and to explore risk factors for augmented vertebral refractures, thereby assisting spinal surgeons in clinical practice. : We analyzed the records of 495 patients with single-segment osteoporotic vertebral compression fractures (OVCFs) who were treated with single-entry PKP at our institution from March 2016 to August 2022. Univariate analysis, binary logistic regression, and ROC curve analysis were performed to determine potential risk factors, independent risk factors, and discrimination ability.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the incidence of radiological adjacent segment disease (R-ASD) at L3/4 between patients with L4/5 degenerative spondylolisthesis (DS) who underwent L4/5 posterior lumbar interbody fusion (PLIF) and those who underwent microscopic bilateral decompression via a unilateral approach (MBDU) at L4/5. Our ultimate goal was to distinguish the course of natural lumbar degeneration from fusion-related degeneration while eliminating L4/5 decompression as a confounder.

Methods: Ninety patients with L4/5 DS who underwent L4/5 PLIF (n = 53) or MBDU (n = 37) and were followed for at least 5 years were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!