Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid.

Aquat Toxicol

Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

Published: April 2022

Polystyrene nanoplastics (PS-NPs) can cause toxicity in aquatic organisms, but presence of natural organic matter (NOM) may alter toxicity of PS-NPs. To better understand effects of NOM on acute toxicity of PS-NPs, humic acid (HA) as a model of NOM was added to green microalga Chlorella vulgaris medium in the presence of amino-functionalized polystyrene nanoplastics (PS-NH). Acute toxicity tests of PS-NH to C. vulgaris biomass and chlorophyll a content showed statistical differences between media treated with different concentrations of PS-NH and control groups (p<0.05). HA significantly mitigated PS-NH toxicity to C. vulgaris biomass and chlorophyll a end-points (p<0.05). Additionally, high HA concentration was more effective than low concentration (10 vs 5 mg/L), showing a greater ameliorative effect on PS-NH acute toxicity (p<0.05). Algae exposed to higher PS-NH concentrations showed greater morphological changes (i.e., diminution of photosynthetic pigments, reduction of algal size and formation of more cellular aggregates). Formation of high amounts of algal aggregates under influence of PS-NH was presumably related to the high electrostatic tendency of these particles (with positively charged surfaces) to C. vulgaris polysaccharide walls (having negative charge). Formation of aggregates was significantly reduced in the presence of HA. HA with dominant negatively charged functional groups (following sorption by PS-NH via reduction of PS-NH zeta potential), could decrease electrostatic attraction between PS-NH and algae, thereby substantially ameliorating cellular aggregation and cell size reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2022.106123DOI Listing

Publication Analysis

Top Keywords

chlorella vulgaris
8
humic acid
8
polystyrene nanoplastics
8
toxicity ps-nps
8
acute toxicity
8
toxicity
6
nano-sized polystyrene
4
polystyrene plastics
4
plastics toxicity
4
toxicity microalgae
4

Similar Publications

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

Edibility of cultivated green seaweed Ulva intestinalis from Monkhali Beach, Cox's Bazar coast of Bangladesh: bio-toxicity and heavy metal contents.

Sci Rep

December 2024

Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, 53064, Gyeongsangnam-do, Republic of Korea.

Ulva intestinalis (UI) is widely available edible seaweed and has potential to be introduced as functional food items in Bangladesh. However, potential health hazards of this seaweed with biotoxicity assays and its relation to heavy metal contents were not evaluated previously. With these objectives, toxic effects of UI collected from floating raft culture in Monkhali Beach was evaluated using various organisms such as Chlorella vulgaris, Artemia salina, Daphnia magna, and Lactuca sativa.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health.

Water Res

December 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).

View Article and Find Full Text PDF

The Beneficial Roles of Seaweed in Atopic Dermatitis.

Mar Drugs

December 2024

Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea.

Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients' quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, a sustainable and nutrient-dense resource, has emerged as a promising alternative due to its rich bioactive compounds-polysaccharides, phlorotannins, polyphenols, and chlorophyll-that offer anti-inflammatory, antioxidant, and immunomodulatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!