Regulating the bacterial oxygen microenvironment via a perfluorocarbon-conjugated bacteriochlorin for enhanced photodynamic antibacterial efficacy.

Acta Biomater

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Published: April 2022

Photodynamic therapy (PDT) has attracted considerable attention, since it could effectively kill bacteria and prevent the development of multi-drug resistance. However, PDT currently suffers from oxygen limitation and hypoxia is a prominent feature of pathological states encountered in inflammation, wounds, and bacterial infections. Herein, an oxygen-tunable nanoplatform based on perfluorocarbon-conjugated tetrafluorophenyl bacteriochlorin (FBC-F) was designed for effective antimicrobial therapy. The introduction of fluorine atoms can not only increase the reactive oxygen species (ROS) production capacity of FBC-F by facilitating the intersystem crossing (ISC) process of FBC photosensitizers, but also make FBC-F deliver more oxygen into the treatment sites benefiting from the outstanding oxygen-dissolving capability of perfluorocarbon. As a consequence, the FBC-F nanoplatform was able to efficiently generate singlet oxygens for type II PDT, as well as superoxide anions and hydroxyl radicals for type I PDT, and significantly improve antibacterial efficacy in vitro. In vivo experiments further proved that the FBC-F with a powerful antibacterial capability could well promote wound healing and destroy biofilm. Thus, this FBC-F nanoplatform may open a new path in photodynamic antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photodynamic therapy is a promising antibacterial treatment, but its efficacy is severely compromised by hypoxia. To overcome such a limitation, we constructed an oxygen-regulated nanoplatform (FBC-F) by attaching perfluorocarbons (PFC) to the NIR photosensitizer (FBC). As an analogue of bacteriochlorin, FBC could generate O through energy transfer , as well as O and ·OH through electron transfer for synergistic type I and type II photodynamic antibacterial therapy. Benefiting from the oxygen-dissolving capability of PFC, FBC-F could efficiently deliver more oxygen into the treatment site and alleviate the hypoxic environment. As a consequence, FBC-F could effectively generate large amounts of reactive oxygen species to achieve improved antibacterial efficacy and provide a promising approach for eliminating biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.02.013DOI Listing

Publication Analysis

Top Keywords

photodynamic antibacterial
12
antibacterial efficacy
12
fbc-f
9
photodynamic therapy
8
reactive oxygen
8
oxygen species
8
deliver oxygen
8
oxygen treatment
8
oxygen-dissolving capability
8
consequence fbc-f
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!