We recently reported that maternal exposure to bisphenol AF (BPAF), an environmental endocrine disruptor (EED), induced significant alterations in emotional behaviors in offspring mice during adolescence in a sex-dependent manner. However, the effects of adult BPAF exposure and the potential long-lasting effects of maternal exposure to BPAF on offspring mice are still unknown. The present study aimed to investigate the neurobehavioral effects of adult and maternal exposure to BPAF, intragastrically (0.4, 4 mg•kg, i.g.), by using a series of classic emotional behavioral tests, mainly referring to depression, anxiety, and memory. The results showed that adult BPAF exposure significantly attenuated anxiety- and depression-like behaviors in adult male mice, while increasing anxiety-like behaviors, promoting novel object recognition memory formation, and impairing contextual fear conditioning memory formation in adult female mice. Maternal exposure to BPAF induced anxiety-like effects and anti-depression-like effects in male offspring mice during adulthood, while maternal BPAF exposure increased anxiety- and depression-like behaviors in female offspring mice during adulthood. Our present findings indicate that BPAF exposure significantly affects emotional behaviors in adult/offspring mice in a sex-dependent manner and that female adult mice are more likely to have adverse consequences to BPAF exposure during adulthood, even during early life stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2022.113747 | DOI Listing |
J Hazard Mater
December 2024
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Toxicol In Vitro
March 2025
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Electronic address:
Various environmental chemicals have been identified as contributors to metabolic diseases. Bisphenol AF (BPAF), a substitute for bisphenol A, has been associated with changes in glucose metabolism and incidence of type 2 diabetes mellitus in humans. However, its mode of action remains unclear.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China. Electronic address:
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring.
View Article and Find Full Text PDFMar Environ Res
November 2024
Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy.
Bisphenol A (BPA) analogues are emerging contaminants, whose ecotoxicological profile for aquatic species, particularly marine ones, is little known. In this study, the effects of an environmentally realistic concentration (300 ng/L) of three BPA analogues (BPAF, BPF, and BPS) - alone or as a mixture (MIX) - were evaluated for the first time on the crab Carcinus aestuarii. A multibiomarker approach was adopted to assess the effects of 7 and 14 days of exposure on haemolymph parameters, gill and hepatopancreas biochemical parameters, and physiological responses of crabs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!