Rational design with fine-tuning of the electrocatalyst material is vital for achieving the desired sensitivity, selectivity, and stability for an electrochemical sensor. In this study, a three-dimensional (3D) hierarchical core-shell catalyst was employed as a self-standing, binder-free electrode for non-enzymatic glucose sensing. The catalyst was prepared by decorating the shell of NiFe layered double hydroxide (LDH) nanosheets (NSs) on the core of Cu nanowires (NWs) grown on a Cu foam support. The optimized 3D core-shell Cu@NiFe LDH sensor demonstrated higher sensitivity (7.88 mA mMcm), lower limit of detection (0.10 µM) and wider linear range (1 µM to 0.9 mM) in glucose sensing with a low working potential (0.4 V). The applied sensor also showed excellent stability, reproducibility, interference ability as well as practicability in real environment. The detection of real samples further suggests its great feasibility for practical applications. The superior electrocatalytic performance is collectively ascribed to the excellent electro-conductivity of the Cu substrate, the distinct self-standing 3D porous nanostructure, the ultrathin homogenous architecture, and the appropriate loading amount of NiFe LDH NSs. This study then provides a non-enzymatic glucose sensor with 3D Cu@NiFe LDH electrode for ultrahigh sensitivity and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.02.037DOI Listing

Publication Analysis

Top Keywords

non-enzymatic glucose
12
nife layered
8
layered double
8
double hydroxide
8
hydroxide ldh
8
ldh nanosheets
8
nanosheets nss
8
glucose sensor
8
glucose sensing
8
cu@nife ldh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!