Purpose: To develop a novel dose-escalated volumetric modulated arc therapy (VMAT) strategy for patients with single or multiple large brain metastases which can deliver a higher dose to individual lesions for better local control (LC), and to compare dosimetry between whole brain radiotherapy (WBRT), hippocampal-sparing whole brain radiotherapy (HS-WBRT) and different VMAT-based focal radiotherapy approaches.
Methods And Materials: We identified 20 patients with one to ten brain metastases and at least one lesion larger than 15 cm who had received WBRT as part of routine care. For each patient, we designed and evaluated five radiotherapy treatment plans, including WBRT, HS-WBRT and three VMAT dosing models. A dose of 20 Gy in 5 fractions was prescribed to the whole brain or target volumes depending on the plan, with higher doses to smaller lesions and dose-escalated inner planning target volumes (DE-iPTV) in VMAT plans, respectively. Treatment plans were evaluated using the efficiency index, mean dose and D0.1 cc to the target volumes and organs at risk.
Results: Compared with WBRT, VMAT plans achieved a significantly more efficient dose distribution in brain lesions, especially with our DE-iPTV model, while minimising the dose to the normal brain and other organs at risks (OARs) (p < 0.05).
Conclusions: VMAT plans obtained higher doses to brain metastases and minimised doses to OARs. Dose-escalated VMAT for larger lesions allows higher radiotherapy doses to be delivered to larger lesions while maintaining safe doses to OARs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2022.02.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!