Unilateral resection of both cortical visual pathways in a pediatric patient alters action but not perception.

Neuropsychologia

The Centre for Vision Research, York University, Canada; Department of Psychology, York University, Canada. Electronic address:

Published: April 2022

The human cortical visual system consists of two major pathways, a ventral pathway which subserves perception and a dorsal pathway which primarily subserves visuomotor control. Previous studies have found that children with cortical resections of the ventral visual pathway retain largely normal visuoperceptual abilities. Whether visually guided actions, supported by computations carried out by the dorsal pathway, follow a similar pattern of preservation remains unknown. To address this question, we examined visuoperceptual and visuomotor behaviors in a pediatric patient, TC, who underwent a cortical resection that included portions of the left ventral and dorsal pathways. We collected kinematic data when TC used her right and left hands to perceptually estimate the width of blocks that varied in width and length, and, separately, to grasp the same blocks. TC's perceptual estimation performance was comparable to that of controls, independent of the hand used. In contrast, relative to controls, she showed reduced visuomotor sensitivity to object shape and this was more evident when she grasped the objects with her contralesional right hand. These results provide novel evidence for a striking difference in the competence of the two visual pathways to cortical injuries acquired in childhood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019735PMC
http://dx.doi.org/10.1016/j.neuropsychologia.2022.108182DOI Listing

Publication Analysis

Top Keywords

cortical visual
8
visual pathways
8
pediatric patient
8
pathway subserves
8
dorsal pathway
8
cortical
5
unilateral resection
4
resection cortical
4
visual
4
pathways
4

Similar Publications

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Objectives: Language is a critical aspect of human cognition and function, and its preservation is a priority for neurosurgical interventions in the left frontal operculum. However, identification of language areas can be inconsistent, even with electrical mapping. The use of multimodal structural and functional neuroimaging in conjunction with intraoperative neuromonitoring may augment cortical language area identification to guide the resection of left frontal opercular lesions.

View Article and Find Full Text PDF

Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.

View Article and Find Full Text PDF

Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!