Dietary supplements sourced from marine environments, such as fish oils and seaweed-based supplements, are widely consumed to boost nutrient intakes, including by vulnerable populations such as pregnant women. Like other marine foods, these supplements are also a potential source of exposure to arsenic, including the known toxic species, inorganic arsenic, and the cytotoxic, lipid-soluble arsenic compounds, arsenic hydrocarbons. A study of 32 marine-sourced supplements found higher total arsenic concentrations (>1000 ng g) in supplements made from seaweed, krill and calanus oil, and in fish and fish liver products marketed as "unprocessed". Inorganic arsenic was only detectable in the seaweed samples, and was elevated (8900 ng g) in one product. Arsenic hydrocarbons were not detected in krill oil samples but were present at concentrations from 169 to 2048 ng g in "unprocessed" fish and fish liver oil, and calanus oil. Survey data from the New Hampshire Birth Cohort Study (NHBCS) found 13.5% of pregnant women (n = 1997) reported taking fish oil supplements; and of those, most did so daily (75.6%, 6 or more times per week). Only a small percentage (9%) of those who reported consuming fish oil used products associated with higher arsenic levels. Higher urinary arsenic concentrations were found among women who consumed fish oil compared with those who did not, and specifically higher arsenobetaine and dimethyl arsenic concentrations. Dietary supplements are becoming common components of modern diets, and some marine-sourced dietary supplements are a source of inorganic arsenic and arsenic hydrocarbons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007862PMC
http://dx.doi.org/10.1016/j.chemosphere.2022.133930DOI Listing

Publication Analysis

Top Keywords

inorganic arsenic
16
dietary supplements
16
arsenic
13
arsenic hydrocarbons
12
arsenic concentrations
12
fish oil
12
supplements
9
marine-sourced dietary
8
fish
8
pregnant women
8

Similar Publications

The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications.

View Article and Find Full Text PDF

Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR.

View Article and Find Full Text PDF

Phenylarsonic acid (PAA) compounds, widely used in animal husbandry, pose a considerable environmental threat owing to their potential transformation into toxic inorganic arsenic species. To efficiently decontaminate PAA and adsorb secondary As(V), a hybrid CuFeO-modified carbon nanotube (CuFeO-CNT) filter was developed in this study. The hybrid CuFeO-CNT filter functioned as an effective catalyst, convective filtration medium, electrode, and adsorbent.

View Article and Find Full Text PDF

Dysregulation of mRNA expression by hsa-miR-186 overexpression in arsenic-induced skin carcinogenesis.

Toxicol Appl Pharmacol

December 2024

Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA. Electronic address:

Dysregulated miRNA expression contributes to development of arsenic-induced cutaneous squamous cell carcinoma (cSCC). hsa-miR-186 (miR-186) is overexpressed in arsenical cSCC tissues as well as in preclinical cell line model of arsenical cSCC. Simultaneous miR-186 overexpression and chronic inorganic trivalent arsenite (iAs; 100 nM) exposure transformed human HaCaT cell line preferentially over miR-186 overexpression or iAs exposure alone.

View Article and Find Full Text PDF

The aim of this study was to estimate the 18 to 74 years old Portuguese population's baseline exposure to inorganic arsenic, cadmium and lead and the risk of exceeding the respective Health Based Guidance Value, using a harmonised Total Diet Study (TDS) methodology. TDS food samples representative of the whole diet were prepared as consumed and analysed for total arsenic, cadmium and lead. European Food Safety Authority's conservative approach was used to estimate inorganic arsenic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!