Solar-powered one-step-excitation overall water splitting (OWS) using semiconducting materials is a simple means of achieving scalable and sustainable hydrogen production. While tantalum oxynitride (TaON) is one of the few photocatalysts capable of promoting OWS via single-step visible-light excitation, the efficiency of this process remains extremely poor. The present work employed 15 nm amorphous Ta O ⋅3.3 H O nanoparticles as a new precursor together with Zr doping and an optimized nitridation duration to synthesize a TaON-based photocatalyst with reduced particle sizes and low defect densities. Upon loading with Ru/Cr O /IrO cocatalysts, this material exhibited stoichiometric water splitting into hydrogen and oxygen, with an order of magnitude improvement in efficiency. Our findings demonstrate the importance of inventing/selecting the appropriate synthetic precursor and of defect control for fabricating active OWS photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202116573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!