Current WHO Guidelines and the Critical Role of Genetic Parameters in the Classification of Glioma: Opportunities for Immunotherapy.

Curr Treat Options Oncol

Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.

Published: February 2022

In the 5 years since the fourth edition of the WHO Classification of Tumors of the Central Nervous System (CNS) (revised) was released, the development of targeted sequencing and omics technology has helped researchers in the field of neuro-oncology to identify some new tumor types in clinical practice, as well as a series of genetic parameters related to tumor occurrence and development, poor prognosis, treatment response, etc. These findings not only provide basic knowledge for the classification of glioma, but also promote the progress of the treatment of gliomas. As a revolution in cancer treatment, immunotherapy has become a promising strategy since the pioneering discovery of lymphatics in the CNS. The advancement and clinical application of immunotherapy have strengthened the demand for accurate classification of glioma. In June 2021, the WHO and the International Agency for Research on Cancer (IARC) published the fifth edition of the WHO Classification of Tumors of the CNS. The fifth edition focuses on advancing the role of genetic parameters in the classification of glioma and divides glioma into more biologically and molecularly defined entities, with better natural history characteristics, and introduced new tumor types and subtypes, especially in the pediatric population. Most importantly, these updated classifications will enable clinicians to better assess the prognosis and formulate the optimal treatment of gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11864-021-00930-4DOI Listing

Publication Analysis

Top Keywords

classification glioma
16
genetic parameters
12
role genetic
8
parameters classification
8
edition classification
8
classification tumors
8
tumor types
8
treatment gliomas
8
classification
6
glioma
5

Similar Publications

Bulk and single-cell transcriptome revealed the metabolic heterogeneity in human glioma.

Heliyon

January 2025

Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.

Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Aggressive resection of non-contrast-enhanced tumor provides varying benefits to glioblastoma, IDH-wildtype patients based on different clinical characteristics.

Cancer Lett

January 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:

Supramaximal resection in glioblastoma, concerning non-contrast-enhancing (nCE) tumors, exhibited additional survival benefits. However, whether all patients can benefit from supramaximal resection of nCE tumors and the optimal resection target remains unclear, especially for the glioblastoma, IDH-wildtype under the new WHO CNS tumor classification. Clinical and surgical characteristics were collected from 155 patients with newly diagnosed glioblastoma, IDH-wildtype from the Chinese Glioma Genome Atlas, and a prospective cohort of 128 patients was enrolled for external validation.

View Article and Find Full Text PDF

There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!