Synthesis of Cyclopropenes and Fluorinated Cyclopropanes via Michael Initiated Ring Closure of Alkyl Triflones.

Chemistry

Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.

Published: April 2022

A facile synthesis of cyclopropenes and fluorinated cyclopropanes from readily available alkyl triflones was developed. The reaction, regardless of electronic effect, gave products in good to excellent yields and moderate diastereoselectivity. The mechanism may involve tandem Michael addition of triflones/intramolecular nucleophilic cyclization (elimination of -SO CF )/elimination of fluoride.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202104364DOI Listing

Publication Analysis

Top Keywords

synthesis cyclopropenes
8
cyclopropenes fluorinated
8
fluorinated cyclopropanes
8
alkyl triflones
8
cyclopropanes michael
4
michael initiated
4
initiated ring
4
ring closure
4
closure alkyl
4
triflones facile
4

Similar Publications

Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters.

J Am Chem Soc

January 2025

Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of -substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities.

View Article and Find Full Text PDF

Sulfone motifs play important roles in bioactive compounds and functional materials. The development of efficient methodologies for constructing sulfonyl-containing compounds has thus attracted considerable attention. Here, we introduce a protocol for the preparation of alkyl aryl sulfones under mild conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method using TMSOTf to create spiroketal derivatives through hydroalkoxylation and cycloaddition reactions involving hydroxy cyclopropenes and aldehydes.
  • This process generates a donor-acceptor cyclopropane intermediate, allowing for the efficient synthesis of [5.5]- and [6.5]-spiroketals.
  • The resulting spirocyclic compounds can be further modified to produce complex polycyclic heterocycles through metal halogen exchange and copper-catalyzed reactions, with a decarboxylation step that introduces a fourth chiral center.
View Article and Find Full Text PDF

Chalcogen Bonding Catalysis Enables Ring-Opening of Cyclopropene and Ring Expansion of Aryl Ketones.

Angew Chem Int Ed Engl

December 2024

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, 250100, P. R. China.

Catalytic transformation of carbene species constitutes a fundamental part in organic synthesis, and the research in this direction has been dominated by transition metals while organic catalysts are difficult to mimic such transition-metal-like reactivity. It would significantly advance carbene chemistry if organic catalysts enable achieving classical metal-carbene approaches otherwise unrealizable reactions. Herein, we report that chalcogen bonding catalysis can solve reactivity problem to achieve an elusive Buchner ring expansion of aryl ketones appending a cyclopropene moiety as carbene precursor.

View Article and Find Full Text PDF

A low-valent niobium species generated from NbCl and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (-Me-CHD) in combination with PPh catalyzed a [2+2+1]-cycloaddition reaction of 3,3-disubstituted cyclopropenes and 2 equiv of diaryl/dialkylalkynes, leading to isomeric mixtures of multisubstituted cyclopentadienes -. The initial catalyst activation process was a one-electron reduction of NbCl with -Me-CHD to provide [NbCl(μ-Cl) (L)] (L = PMePh (), L = PPh ()) in the presence of phosphine ligands. An NMR spectroscopic time course experiment using complex as the catalyst revealed an induction period for the product formation, corresponding to an additional one-electron reduction of by the substrates to give catalytically active η-alkyne complexes of NbCl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!