A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reversible Pressure-Dependent Mechanochromism of Dion-Jacobson and Ruddlesden-Popper Layered Hybrid Perovskites. | LitMetric

Layered Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) hybrid perovskites are promising materials for optoelectronic applications due to their modular structure. To fully exploit their functionality, mechanical stimuli can be used to control their properties without changing the composition. However, the responsiveness of these systems to pressure compatible with practical applications (<1 GPa) remains unexploited. Hydrostatic pressure is used to investigate the structure-property relationships in representative iodide and bromide DJ and RP 2D perovskites based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) spacers in the 0-0.35 GPa pressure range. Pressure-dependent X-ray scattering measurements reveal that lattices of these compositions monotonically shrink and density functional theory calculations provide insights into the structural changes within the organic spacer layer. These structural changes affect the optical properties; the most significant shift in the optical absorption is observed in (BzA) PbBr under 0.35 GPa pressure, which is attributed to an isostructural phase transition. Surprisingly, the RP and DJ perovskites behave similarly under pressure, despite the different binding modes of the spacer molecules. This study provides important insights into how the manipulation of the crystal structure affects the optoelectronic properties of such materials, whereas the reversibility of their response expands the perspectives for future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202108720DOI Listing

Publication Analysis

Top Keywords

dion-jacobson ruddlesden-popper
8
hybrid perovskites
8
reversible pressure-dependent
4
pressure-dependent mechanochromism
4
mechanochromism dion-jacobson
4
ruddlesden-popper layered
4
layered hybrid
4
perovskites layered
4
layered dion-jacobson
4
ruddlesden-popper hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!