AI Article Synopsis

  • Five severe floods occurred in the Yangtze River Basin in July and August 2020, with the Three Gorges Reservoir experiencing its highest inflow since it was built.
  • The collaboration of 22 cascade reservoirs in the upper Yangtze River effectively managed the floods, preventing the evacuation of 600,000 people and protecting agricultural and aquacultural areas.
  • To enhance future flood control, recommendations include improving flood forecasts, advancing research on reservoir cooperation, and refining institutional frameworks for managing large reservoir groups.

Article Abstract

Five severe floods occurred in the Yangtze River Basin, China, between July and August 2020, and the Three Gorges Reservoir (TGR) located in the middle Yangtze River experienced the highest inflow since construction. The world's largest cascade-reservoir group, which counts for 22 cascade reservoirs in the upper Yangtze River, cooperated in real time to control floods. The cooperation prevented evacuation of 600,000 people and extensive inundations of farmlands and aquacultural areas. In addition, no water spillage occurred during the flood control period, resulting in a world-record annual output of the TGR hydropower station. This work describes decision making challenges in the cooperation of super large reservoir groups based on a case-study, controlling the 4th and 5th floods (from Aug-14 to Aug-22), the efforts of technicians, multi-departments, and the state, and reflects on these. To realize the full potential of reservoir operation for the Yangtze River Basin and other basins with large reservoir groups globally, we suggest: (i) improve flood forecast accuracy with a long leading time; (ii) strengthen and further develop ongoing research on reservoir group cooperation; and (iii) improve and implement institutional mechanisms for coordinated operation of large reservoir groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857279PMC
http://dx.doi.org/10.1038/s41598-022-06801-8DOI Listing

Publication Analysis

Top Keywords

yangtze river
20
large reservoir
12
reservoir groups
12
reservoir operation
8
river basin
8
reservoir
7
yangtze
5
river
5
realizing full
4
full reservoir
4

Similar Publications

A review in analytical progress for house dust mite allergens.

Rev Environ Health

March 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China.

House dust mite (HDM) allergens are one of the most important causes of allergenic diseases in the indoor environment. The World Health Organization (WHO) has defined risk thresholds for Group I HDM allergens as a concentration of 2 and 10 μg/mL in dust for producing asthma risk and polar asthma attacks, respectively. Continuing exposure to high concentrations of HDM allergens greatly increases the risk of developing allergic diseases.

View Article and Find Full Text PDF

Synthesis of hollow hierarchical porous carbon spheres from lignin by soft template and hydrothermal method for supercapacitors.

Int J Biol Macromol

March 2025

College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address:

Among the various carbon-based electrode materials, porous carbon spheres stand out for their exceptional properties, such as high specific surface area (SSA), high percussion density, and distinctive surface chemistry, which are conducive to uniform surface modification and acceleration of electrolyte diffusion, thereby enhancing the energy density of battery. Hollow carbon spheres, with their unique structure, are drawing increasing attention for their potential applications in energy storage devices. In this work, hollow hierarchical porous carbon spheres (HPCS) were synthesized by one-pot method using alkali lignin extracted from corn straw as carbon precursor, CTAB as template agent, Zn as crosslinking agent and KHCO as activator.

View Article and Find Full Text PDF

Microplastics (MPs) are widely distributed as a global pollutant, with dynamic patterns driven by horizontal diffusion and vertical mixing in marine ecosystems across different hydrological seasons and regions. This study employed MATLAB for image processing and interactive operations to extract data from existing studies on the Chinese Marginal Seas conducted from 2016 to 2022, focusing on the distribution, sources, and transport processes of MPs. The results revealed that the Bohai Sea exhibited the highest pollution levels during both the rainy (9328.

View Article and Find Full Text PDF

Hydrological isolation accelerates algal blooms in floodplain lakes: Biomarker evidence from Dongting Lake, China and its satellite lake.

Water Res

March 2025

Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen, 6708 PB, the Netherlands; Department of Ecology and Biodiversity/Department of Physical Geography, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands.

Hydrological disconnection from main channels (either via natural siltation or due to construction of hydrological infrastructures) is modifying biogeochemical cycling in river-floodplain systems. Knowledge on how this process influences phytoplankton composition and harmful algal blooms (HABs) in floodplain lakes is quite scant due to the lack of long-term water quality monitoring and the concurrent influence of multiple drivers of change. Here, chlorophyll and carotenoid pigment biomarkers from dated sediment cores were analyzed from Dongting Lake (China's second largest freshwater lake) and one of its satellite lakes (Donghu) in the Yangtze floodplain, to evaluate the long-term influence of hydrological isolation on algal community composition and HABs.

View Article and Find Full Text PDF

A rhizobacterium-secreted protein induces lateral root development through the IAA34-PUCHI pathway.

Cell Rep

March 2025

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Lateral roots (LRs) can continuously forage water and nutrients from soil. In Arabidopsis thaliana, LR development depends on a canonical auxin signaling pathway involving the core transcription factors INDOLE-3-ACETIC ACIDs (IAAs) and AUXIN RESPONSE FACTORs (ARFs). In this study, we identified a protein, bacillolysin, secreted by the beneficial rhizobacterium Bacillus velezensis SQR9, that is able to stimulate LR formation of Arabidopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!