In the context of social events reopening and economic relaunch, sanitary surveillance of SARS-CoV-2 infection is still required. Here, we evaluated the diagnostic performances of a rapid, extraction-free and connected reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay on saliva. Nasopharyngeal (NP) swabs and saliva from 443 outpatients were collected simultaneously and tested by reverse-transcription quantitative PCR (RT-qPCR) as reference standard test. Seventy-one individuals (16.0%) were positive by NP and/or salivary RT-qPCR. Sensitivity and specificity of salivary RT-LAMP were 85.9% (95%CI 77.8-94.0%) and 99.5% (98.7-100%), respectively. Performances were similar for symptomatic and asymptomatic participants. Moreover, SARS-CoV-2 genetic variants were analyzed and no dominant mutation in RT-LAMP primer region was observed during the period of the study. We demonstrated that this RT-LAMP test on self-collected saliva is reliable for SARS-CoV-2 detection. This simple connected test with optional automatic results transfer to health authorities is unique and opens the way to secure professional and social events in actual context of economics restart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857239 | PMC |
http://dx.doi.org/10.1038/s41598-022-04826-7 | DOI Listing |
Biomater Sci
December 2024
Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Sections Integrative Ecophysiology and Deep-Sea Ecology & Technology, Am Handelshafen 12, 27515 Bremerhaven, Germany.
Increasing frequencies of heatwaves threaten marine ectotherm species but not all alike. In exposed habitats, some species rely on a higher capacity for passive tolerance at higher temperatures, thereby extending time-dependent survival limits. Here we assess how the involvement of the cardiovascular system in extended tolerance at the margins of the thermal performance curve is dependent on warming rate.
View Article and Find Full Text PDFIJID Reg
March 2025
Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar.
Objectives: Mass gathering events may facilitate the transmission of foodborne diseases. We determined the presentations and causative organisms of gastrointestinal illness among the attendees of the Fédération Internationale de Football Association Football World Cup 2022 (FIFA 2022).
Methods: The study was conducted at Hamad Medical Corporation in Qatar, which served as the national reference laboratory for all microbiology testing.
RSC Adv
December 2024
Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P. O. Box 1888 Adama Ethiopia
Hierarchical binder-free NiCoO@CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCoO nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.
View Article and Find Full Text PDFFront Immunol
December 2024
Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany.
Recent studies have revealed the potential of tumor-infiltrating lymphocytes (TILs) to treat solid tumors effectively and safely. However, the translation of TIL therapy for patients is still hampered by non-standardized and laborious manufacturing procedures that are expensive and produce highly variable cellular products. To address these limitations, the CliniMACS Prodigy Tumor Reactive T cell (TRT) Process has been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!