Chitinases, the chitin-degrading enzymes, have been shown to play important role in defense against the chitin-containing fungal pathogens. In this study, we identified 48 chitinase-coding genes from the woody model plant Populus trichocarpa. Based on phylogenetic analysis, the Populus chitinases were classified into seven groups. Different gene structures and protein domain architectures were found among the seven Populus chitinase groups. Selection pressure analysis indicated that all the seven groups are under purifying selection. Phylogenetic analysis combined with chromosome location analysis showed that Populus chitinase gene family mainly expanded through tandem duplication. The Populus chitinase gene family underwent marked expression divergence and is inducibly expressed in response to treatments, such as chitosan, chitin, salicylic acid and methyl jasmonate. Protein enzymatic activity analysis showed that Populus chitinases had activity towards both chitin and chitosan. By integrating sequence characteristic, phylogenetic, selection pressure, gene expression and protein activity analysis, this study shed light on the evolution and function of chitinase family in poplar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2022.146329 | DOI Listing |
Antioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.
B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.
View Article and Find Full Text PDFFungal Genet Biol
January 2025
Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:
Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China. Electronic address:
Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China. Electronic address:
Vibrio-induced diseases pose a significant threat to shrimp aquaculture. While the mechanisms underlying Vibrio penetration of shrimp shells and the gastrointestinal tract remain unclear, this study implicates chitinases as critical virulence factors. Despite their inability to utilize chitin or shrimp shells as sole carbon and nitrogen sources, three major shrimp pathogens-V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!