Organic wastes bioremediation and its changing prospects.

Sci Total Environ

Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan. Electronic address:

Published: June 2022

Increasing inappropriate anthropogenic activities and industrialization have resulted in severe environmental pollution worldwide. Their effective treatment is vital for general health concerns. Depending on the characteristics of pollutants, the severity of pollution may differ. For sustainable treatment of polluted environments, bioremediation is accepted as the most efficient, economical, and environmentally friendly method hence largely preferred. However, every bioremediation technique has its own unique advantages and limitations due to its defined applications criteria. In bioremediation, microorganisms play a decisive role in detoxification by degrading, mineralizing and accumulating various forms of harmful and biodegradable pollutants from the surroundings and transforming them into less lethal forms. Bioremediation is performed ex-situ or in-situ, based on location of polluted site as well as characteristics, type and strength of the pollutants. Furthermore, the most popular methodologies for bioremediation include bioaugmentation, biostimulation, bioattenuation among others which depend on the prevailing environmental factors into the microbial system. Implementing them appropriately and effectively under ex-situ or in-situ method is extremely important not only for obtaining efficient treatment but also for the best economic, environmental, and social impacts. Therefore, this review aims to analyze various bioremediation methods for organic pollutants remediation from soil/sediments and wastewater, their strength, limitation, and insights for the selection of appropriate bioremediation techniques based on nature, types, degree, and location of the pollution. The novelty aspect of the article is to give updates on several key supporting technologies which have recently emerged and exhibited great potential to enhance the present bioremediation efficiency such as nanobubble, engineered biochar, mixotrophic microalgae, nanotechnology etc. Moreover, amalgamation of these technologies with existing bioremediation facilities are significantly changing the scenario and scope of environmental remediation towards sustainable bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153889DOI Listing

Publication Analysis

Top Keywords

bioremediation
11
ex-situ in-situ
8
organic wastes
4
wastes bioremediation
4
bioremediation changing
4
changing prospects
4
prospects increasing
4
increasing inappropriate
4
inappropriate anthropogenic
4
anthropogenic activities
4

Similar Publications

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Utility of integrated papyrus-bivalve for bioremediation of aquaculture wastewater.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Aquaculture generates substantial amount of residual feeds and faecal matter that accumulate in the culture environment and pollute effluent-receiving water, diminishing its ecological functioning. To devise means of treating nutrient-rich aquaculture wastewater, the efficiency of integrated papyrus-bivalve mesocosms in removing nutrients was evaluated. The mesocosms were fed on water (6600 L) from one brood-stock pond and allowed to settle for 2 weeks.

View Article and Find Full Text PDF

Radiation-resistant bacteria are of great application potential in various fields, including bioindustry and bioremediation of radioactive waste. However, how radiation-resistant bacteria combat against invading phages is seldom addressed. Here, we present a series of crystal structures of a sensor and an effector of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) from a radioresistant bacterium Deinococcus wulumuqiensis.

View Article and Find Full Text PDF

The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!